摘要:
A medium- and high-voltage gas-insulated circuit breaker with arc quenching capability, comprising an electrical contact which is provided with a fixed element and with a movable element which can be mutually coupled and which form, upon separation, an arc channel into which a blast of gas is introduced which is generated by a gas chamber provided with an orifice which is controlled by a valve. The particularity of the invention is constituted by the fact that the valve is driven by the current that flows across the electrical contact.
摘要:
The low-voltage switch includes a stationary contact (2) and a moving contact (3). The two contacts and an arc splitter stack (6) are arranged in an arc quenching chamber (5). An elongation element (14) is fitted on the stationary contact (2), extends in the direction of the arc splitter stack (6) and is used for accommodating an arc root. A section, which is constructed in the form of a plate, of a power supply lead of the stationary contact (2) is widened in a U-shape. The two limbs (11) of the U are bridged by a yoke (12) at their free ends. A conductor element is fitted on the yoke (12), which conductor element is in the form of a plate, is formed by a contact tongue (13) of the stationary contact (2) and by an elongation element (14) fastened thereto, and is inclined in the direction of the arc splitter stack (6) with respect to the plate-shaped section of the power supply lead. Arranged in the arc quenching chamber (5) is an insulating element (15) which is provided with an opening (16), shields the plate-shaped section of the power supply lead of the stationary contact (2) with respect to the arc quenching chamber (5) and through whose opening (16) the plate-shaped conductor element is passed.This switch is distinguished by low contact erosion and low wear of the arc quenching chamber (5), while having a high switching power. This is dependent on the fact that quenching gas which emerges from the insulating part under the influence of an arc flows deliberately in the direction of the arc splitter stack (6), and that the root of the switching arc, which root originates on the stationary contact (2), is guided particularly rapidly into the arc splitter stack by this gas flow and by the force of the magnetic field of the current which is to be disconnected.