Abstract:
A swivel drawbar hitch has a first cradle having a first pivot mechanism located ahead of a connection between a drawbar and the swivel drawbar hitch, the swivel drawbar hitch further including an elongated second cradle coupled to the first cradle and further having a second pivot mechanism, the first cradle pivotable about a horizontal axis of the swivel drawbar hitch, the elongated second cradle pivotable about a longitudinal axis of the swivel drawbar hitch.
Abstract:
As crop materials are severed from the field, they pass through two successive pairs of counter-rotating conditioning rolls before being returned to the ground. The front rolls are preferably ribbed, metal rolls wherein the ribs of one roll are intermeshed with those of the other roll so as to crimp the stems of the crop materials as they pass between the rolls. The hard metal ribs also aggressively feed the materials rearwardly into the second set of rolls, which are preferably compressive surface rolls made of rubber or the like and provided with wide, intermeshed bars about their periphery. The tension mechanism for the rolls includes single-acting hydraulic cylinders that squeeze the rolls together to the extent permitted by adjustable stop structure used to set gaps between the rolls. In typical operations, the gap between the rear rolls is set to be considerably smaller than the gap between the front rolls. Great flexibility in the degree of conditioning experienced by the crop materials is achieved by the nature of the rolls and the ease with which roll pressure and spacing can be adjusted.
Abstract:
A harvester suitable for triple windrowing operations has a cross-conveyor located behind the harvesting header for intercepting a stream of severed materials projected rearwardly from the header as the machine moves through the field. The cross-conveyor may be maintained in a raised or lowered position independently of the header so that, when the cross-conveyor is raised, the stream of severed materials from the header can be projected straight back underneath the raised conveyor to fall onto the ground generally in line with the header. For triple windrowing, a first pass is made with the cross-conveyor raised so that the first deposit is made directly behind the header on the mowed strip of the first pass. The first pass is carried out at a distance inwardly from the uncut edge of standing materials that is equal to or less than the width of the header so that a band of standing materials is left along one side of the mowed strip and the main remaining body of standing materials is presented along the other side. During the second pass, either through the main body or the band of materials depending upon the direction at which the cross-conveyor is angled rearwardly, the cross-conveyor is in its lowered position so as to intercept the stream of materials from the header, convey them laterally, and project them into a second deposit of material in the mowed strip from the first pass. The third pass is then made with the cross-conveyor also in a lowered position to form a third deposit of materials in the first mowed strip. When all three passes are complete, a total of three deposits of material are presented in the mowed strip from the first pass. An extension conveyor in the discharge area of the cross-conveyor accelerates the crop materials and is cocked upwardly to provide additional loft to the materials, thus enabling the materials to travel the extra distances needed to carry out the triple windrowing process.
Abstract:
As crop materials are severed from the field, they pass through two successive pairs of counter-rotating conditioning rolls before being returned to the ground. The front rolls are preferably ribbed, metal rolls wherein the ribs of one roll are intermeshed with those of the other roll so as to crimp the stems of the crop materials as they pass between the rolls. The hard metal ribs also aggressively feed the materials rearwardly into the second set of rolls, which are preferably compressive surface rolls made of rubber or the like and provided with wide, intermeshed bars about their periphery. The tension mechanism for the rolls includes single-acting hydraulic cylinders that squeeze the rolls together to the extent permitted by adjustable stop structure used to set gaps between the rolls. In typical operations, the gap between the rear rolls is set to be considerably smaller than the gap between the front rolls. Great flexibility in the degree of conditioning experienced by the crop materials is achieved by the nature of the rolls and the ease with which roll pressure and spacing can be adjusted.
Abstract:
The bearing assembly includes a synthetic resinous collar which circumscribes the tube and oscillates therewith against the inside of a metal bushing wedged within a metal housing that is bolted to the adjacent tine tube carrier arm of the reel. The bushing is constructed from a pair of generally semicircular half-sections that are abutted together to make a complete annulus when held within the housing, thereby permitting removal of the bushing from the tube by simply separating the two half-sections from one another after the housing has been slipped axially off the end of the bushing. A slit in one side of the collar permits opposed wall portions thereof to be spread apart so that the collar may likewise be removed from the tube in a transverse direction rather than requiring axial movement along the tube which would be obstructed by crop-engaging tines of the reel.
Abstract:
The conditioning rolls of a crop harvester have intermeshing metal ribs arranged in a herringbone pattern, each rib comprising a pair of end-to-end segments that converge spirally from opposite ends of the roll to a centermost apex. Alternative embodiments provide a single pair of metal herringbone rolls, two pairs of metal herringbone rolls, or a front pair of metal herringbone rolls and a rear pair of compressible surface herringbone rolls.
Abstract:
As crop materials are severed from the field, they pass through two successive pairs of counter-rotating conditioning rolls before being returned to the ground. The front rolls are preferably ribbed, metal rolls wherein the ribs of one roll are intermeshed with those of the other roll so as to crimp the stems of the crop materials as they pass between the rolls. The hard metal ribs also aggressively feed the materials rearwardly into the second set of rolls, which are preferably compressive surface rolls made of rubber or the like and provided with wide, intermeshed bars about their periphery. The tension mechanism for the rolls includes single-acting hydraulic cylinders that squeeze the rolls together to the extent permitted by adjustable stop structure used to set gaps between the rolls. An accumulator is hydraulically connected to the hydraulic cylinders for cushioning the tension mechanism.
Abstract:
A crop harvesting header includes a wide cutter for severing crop across a relatively large cutting width, and framework defining a discharge opening spaced rearwardly from the cutter. The discharge opening has a width that is less than the cutting width such that crop severed laterally outboard of the discharge opening by the cutter must be conveyed inwardly before passing through the opening. At least one laterally extending, rotatable auger is located between the cutter and discharge opening for converging severed crop centrally from the areas located laterally outboard of the discharge opening and to project the crop through the opening when rotated. The header includes an auger support for rotatably supporting the auger between its opposite ends on the header framework so that the auger is capable of spanning the long distance corresponding to the large cutting width defined by the sickle bar.
Abstract:
The conditioning rolls of a crop harvester have intermeshing metal ribs arranged in a herringbone pattern, each rib comprising a pair of end-to-end segments that converge spirally from opposite ends of the roll to a centermost apex. Alternative embodiments provide a single pair of metal herringbone rolls, two pairs of metal herringbone rolls, or a front pair of metal herringbone rolls and a rear pair of compressible surface herringbone rolls.
Abstract:
Each crop consolidating auger assembly of a harvester includes an elongated, inner, stationary support that is mounted on the sidewall of the header in a cantilevered manner and extends inwardly from the sidewall into overlying relationship with the floor of the header. A longer, flighted housing of the assembly circumscribes the support and is rotatably carried thereby in coaxial relationship therewith. A hydraulic motor carried by the support adjacent its inboard end is drivingly connected to the interior surface of the wall of the housing by structure in the form of an annular connecting member and appropriate fasteners.