Abstract:
A microwave heating device includes a variable frequency microwave power supply, a waveguide launcher, and a fixture to contain a material to be heated, with the fixture located directly adjacent to the end of the launcher. All heating occurs in the near-field region. This condition may be insured by keeping the thickness of the fixture or workpiece under one wavelength (at all microwave frequencies being used). The launcher is preferably a horn or waveguide configured to apply the microwave power to a small area to perform spot curing or repair operations involving adhesives and composites. The spot curing may secure components in place for further handling, after which a thermal or oven treatment will cure the remaining adhesive to develop adequate strength for service.
Abstract:
A microwave heating device includes a variable frequency microwave power supply, a waveguide launcher, and a fixture to contain a material to be heated, with the fixture located directly adjacent to the end of the launcher. All heating occurs in the near-field region, i.e., no cavity modes or standing waves are established within the fixture. This condition may be insured by keeping the thickness of the fixture or workpiece under one wavelength (at all microwave frequencies being used). The launcher is preferably a horn configured to spread the microwave power laterally over a selected area while maintaining a single propagating mode. The invention may be used to enhance catalytic reactions for research and other purposes. Alternatively, the invention may be configured to perform spot curing or repair operations involving adhesives and composites.
Abstract:
An apparatus for heating a semiconductor wafer includes: a microwave source; an applicator cavity; and, a fixture for supporting a wafer in the cavity. The fixture comprises a dielectric mechanical support for the wafer and a grounded metallic ring movably positioned parallel to and concentric with the wafer at some distance from the wafer, to adjust the microwave power distribution to compensate for edge effects. A closed-loop feedback system adjusts the distance based on wafer edge and center temperatures. A method for heating a semiconductor wafer comprises: a. placing the wafer in a microwave cavity; b. supporting the wafer on a fixture comprising a dielectric wafer support and a grounded metallic ring movably positioned at some distance from the wafer; c. introducing microwave power into the cavity to heat the wafer; and d. adjusting the distance between wafer and ring to modify the power distribution near the wafer edge.
Abstract:
A microwave heating device includes a variable frequency microwave power supply, a waveguide launcher, and a fixture to contain a material to be heated, with the fixture located directly adjacent to the end of the launcher. All heating occurs in the near-field region. This condition may be insured by keeping the thickness of the fixture or workpiece under one wavelength (at all microwave frequencies being used). The launcher is preferably a horn or waveguide configured to apply the microwave power to a small area to perform spot curing or repair operations involving adhesives and composites. The spot curing may secure components in place for further handling, after which a thermal or oven treatment will cure the remaining adhesive to develop adequate strength for service. A related method is also disclosed.
Abstract:
An apparatus for heating a semiconductor wafer includes: a microwave source; an applicator cavity; and, a fixture for supporting a wafer in the cavity. The fixture contains a dielectric mechanical support for the wafer and a grounded metallic ring movably positioned parallel to and concentric with the wafer at some distance from the wafer, to adjust the microwave power distribution to compensate for edge effects. A closed-loop feedback system adjusts the distance based on wafer edge and center temperatures. A method for heating a semiconductor wafer includes: a. placing the wafer in a microwave cavity; b. supporting the wafer on a fixture having a dielectric wafer support and a grounded metallic ring movably positioned at some distance from the wafer; c. introducing microwave power into the cavity to heat the wafer; and d. adjusting the distance between wafer and ring to modify the power distribution near the wafer edge.
Abstract:
A microwave processing system includes: a broadband variable frequency microwave (VFM) source; a plurality of waveguide applicators, each of which includes a waveguide transition and is capable of supporting a selected subset of frequencies within the bandwidth of the broadband VFM source; a microwave switching means allowing the microwave source to be connected to any one of the waveguide transitions so that microwave power is delivered to the corresponding waveguide applicator; and wherein each of the waveguide applicators includes at least one channel through which a microwave transparent tube may be run so that process fluid flowing through the tube may be exposed to microwave power in the applicator.
Abstract:
A microwave heating device includes a variable frequency microwave power supply, a waveguide launcher, and a fixture to contain a material to be heated, with the fixture located directly adjacent to the end of the launcher. All heating occurs in the near-field region. This condition may be insured by keeping the thickness of the fixture or workpiece under one wavelength (at all microwave frequencies being used). The launcher is preferably a horn or waveguide configured to apply the microwave power to a small area to perform spot curing or repair operations involving adhesives and composites. The spot curing may secure components in place for further handling, after which a thermal or oven treatment will cure the remaining adhesive to develop adequate strength for service.A related method is also disclosed.
Abstract:
A microwave processing system includes: a broadband variable frequency microwave (VFM) source; a plurality of waveguide applicators, each of which includes a waveguide transition and is capable of supporting a selected subset of frequencies within the bandwidth of the broadband VFM source; a microwave switching means allowing the microwave source to be connected to any one of the waveguide transitions so that microwave power is delivered to the corresponding waveguide applicator; and wherein each of the waveguide applicators includes at least one channel through which a microwave transparent tube may be run so that process fluid flowing through the tube may be exposed to microwave power in the applicator. A related method is also disclosed.
Abstract:
A microwave power supply includes a magnetron, a waveguide configured to carry microwave power from the magnetron to a selected load, and an adjustable impedance element connected to the waveguide at a location upstream from the magnetron. The power supply may further include provision for varying the filament voltage to the magnetron tube. In the associated method, the adjustable upstream impedance and the adjustable filament voltage may be combined (and may be adjusted iteratively) to achieve high Q output. The load may be an applicator cavity for processing selected materials. The invention is particularly suitable for high Q cavities, such as single mode cavities, where it is desirable to match the output of the microwave source to the characteristics of the cavity for efficient operation. The adjustable upstream impedance element represents an electrical characteristic that may be achieved through various physically adjustable devices such as a movable backwall, a sliding short, a stub tuner, or an adjustable iris.
Abstract:
A microwave heating device includes a variable frequency microwave power supply, a waveguide launcher, and a fixture to contain a material to be heated, with the fixture located directly adjacent to the end of the launcher. All heating occurs in the near-field region, i.e., no cavity modes or standing waves are established within the fixture. This condition may be insured by keeping the thickness of the fixture or workpiece under one wavelength (at all microwave frequencies being used). The launcher is preferably a horn configured to spread the microwave power laterally over a selected area while maintaining a single propagating mode. The invention may be used to enhance catalytic reactions for research and other purposes. Alternatively, the invention may be configured to perform spot curing or repair operations involving adhesives and composites.