Abstract:
A driver chip includes a base body, input terminals, first output terminals and dummy terminals. The base body includes a face having first to fourth edge portions. The first and second edge portions are disposed in substantially parallel along a longitudinal side of the face, and the third and fourth edge portions are disposed in substantially parallel along a horizontal side of the face. The input terminals are formed on the first edge portion such that the input terminals are arranged along the longitudinal side. The first output terminals are formed on the second edge portion such that the first output terminals are arranged along the longitudinal side. The dummy terminals are formed such that the dummy terminals are disposed between the input terminals and the first output terminals. A warpage and defects of electrical connection between the driver chip and a display panel of the display apparatus are prevented.
Abstract:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
Abstract:
A light-generating device includes a driving substrate and a plurality of light source arrays. The driving substrate has a rectangular planar shape. The plurality of light source arrays is formed on the driving substrate. The light source arrays include at least one light emitting diode to generate light in response to power being applied through the substrate, and the light source arrays are spaced apart from each other. Thus, heat generated from the light-generating device is rapidly dissipated from the light-generating device, improving brightness of the light, brightness uniformity of the light and color reproducibility of the light.
Abstract:
A light emitting diode includes a lens, a chip base attached to a bottom of the lens, and an LED chip attached in the chip base to be concentric with the lens. The lens includes a bottom, an outer sidewall extending from the bottom, a first outer top surface extending from the outer sidewall, a second outer top surface extending from the first outer top surface and having a substantially conical groove-like shape, an inner sidewall forming a side of a central cavity formed by hollowing a central portion of the bottom, and an inner top surface extending from the inner sidewall and forming a ceiling of the central cavity. The substantially conical groove-like shaped second outer top surface has an angular point formed toward the central cavity, and the inner top surface is convexly formed toward the bottom.
Abstract:
A driver chip includes a base body, an input terminal section and a first output terminal section. The base body includes a face having a long side and a short side. The input terminal section is formed at a first edge portion of the face along the long side. The first output terminal section is formed at a second edge portion that is opposite to the first edge portion. The input terminal section and the first output terminal section are disposed within about 9d/10 from a center of the long side toward the short side, wherein ‘d’ represents a distance between the center of the long side and the short side.
Abstract:
A backlight assembly and a liquid crystal display device can discharge heat from the lamp unit to the outside or effectively dissipate the heat. The backlight assembly of the present invention includes a lamp unit, a receiving member for receiving the lamp unit, a first heat dissipation member disposed below the receiving member, and a second heat dissipation for wrapping around a lateral side of the receiving member and the first heat dissipation member. The lamp unit is disposed on an area corresponding to the lateral side of the receiving member. In one embodiment, the first heat dissipation member is a flat plate made of graphite and disposed on an outer side of the bottom of the receiving member. The second heat dissipation member is metal with good thermal conductivity in close contact with the first heat dissipation member and the lateral side of the receiving member where the lamp unit is disposed. Thus, the heat discharged from the lamp unit can be distributed uniformly over the entire area of the receiving member. In addition, the lateral side of the receiving member where the lamp unit is disposed can be replaced with the second heat dissipation member.
Abstract:
A backlight assembly includes a light-generating unit, a heat-radiation member, a first receiving container, and a second receiving container. The heat-radiation member is disposed under the light-generating unit and radiates heat generated by the light-generating unit. The first receiving container is composed of a bottom portion and side portion extended from the bottom portion. The first receiving container has an opening formed through partial removal of the bottom portion so that the heat-radiation member received inside is exposed. The second receiving container is disposed under the first receiving container. An air layer is formed in between the first and second receiving containers.
Abstract:
The present invention relates to a light emitting diode module, as well as a backlight assembly and a display device including the same. The light emitting diode module according to an exemplary embodiment of the present invention includes a printed circuit board having a plurality of junction holes, a plurality of light emitting diodes having a light emitting portion for emitting light and a lead portion with one end electrically connected to the light emitting portion and the other end positioned in a corresponding junction hole, and a junction member filled in the corresponding junction hole in which the lead portion is positioned.
Abstract:
A backlight unit comprises a light source part, and a reflective partition for dividing the light source part into a plurality of areas and reflecting light from the light source part. The light source part comprises a light emitting diode and a circuit board on which the light emitting diode is disposed. The reflective partition has a greater height than the light emitting diode.
Abstract:
A backlight assembly includes a light-generating unit, a heat-radiation member, a first receiving container, and a second receiving container. The heat-radiation member is disposed under the light-generating unit and radiates heat generated by the light-generating unit. The first receiving container is composed of a bottom portion and side portion extended from the bottom portion. The first receiving container has an opening formed through partial removal of the bottom portion so that the heat-radiation member received inside is exposed. The second receiving container is disposed under the first receiving container. An air layer is formed in between the first and second receiving containers.