Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the installation and deployment of systems. Energy systems, (500) specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that improve the system performance, improve the installation, lower the cost, and provide monitoring and service to maintain optimum performance. Finally, services are provided that facilitate the optimization of responses to poor system performance based on criticality of the failure, servicing of the system by a Certified VAR, or other prioritization method.
Abstract:
A toolkit for developing user-interfaces for a system administration program. The toolkit has a server-side application-programming interface (API). The server-side has task-registry files that each describe a task group. The toolkit also has a client-side API. A developer can customize product-specific properties files for a specific product and write code that calls the server-side and client-side APIs to create a graphical user interface for the specific product.
Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the performance of systems. Energy systems, specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that facilitate the adoption and deployment of these systems. Services are provided that aid in enhancing energy educational activities. The services represent the quantity of energy generation as energy demands that the students may appreciate. Furthermore, the services are interactive and may allow the students to change System Parameters so that they more fully understand the influence of these parameters on the energy generation efficiency.
Abstract:
Systems and methods are provided for collecting (200), aggregating (201), and analyzing data (202, 203) associated with the installation and deployment of systems. Energy systems, specifically renewable energy generating systems, are used as examples. The aggregated data (201) serve as the basis for a variety of services that improve the system performance metrics (209), improve the installation metrics, lower the cost, and provide monitoring and service to improve performance. Finally, services are provided that facilitate the improvement of the performance metrics of various Supply Chain Entities in the supply chain as well as overall system performance metrics.
Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the installation and deployment of systems. Energy systems, (300) specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that facilitate the adoption and deployment of these systems. Services are provided that aid in the modeling and establishment of improved System Performance Guarantee commitments. Additionally, services are provided that improve the system performance, improve the installation, lower the cost, and provide monitoring and service to maintain improved performance.
Abstract:
Systems and methods are provided for collecting (200), aggregating (201), and analyzing data (202, 203) associated with the installation and deployment of systems. Energy systems, specifically renewable energy generating systems, are used as examples. The aggregated data (201) serve as the basis for a variety of services that improve the system performance metrics (209), improve the installation metrics, lower the cost, and provide monitoring and service to improve performance. Finally, services are provided that facilitate the improvement of the performance metrics of various Supply Chain Entities in the supply chain as well as overall system performance metrics.
Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the installation and deployment of systems. Energy systems, (500) specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that improve the system performance, improve the installation, lower the cost, and provide monitoring and service to maintain optimum performance. Finally, services are provided that improve the start-up, calibration, and configuration of systems.
Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the installation and deployment of systems. Energy systems, (500) specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that improve the system performance, improve the installation, lower the cost, and provide monitoring and service to maintain optimum performance. Finally, services are provided that improve the start-up, calibration, and configuration of systems.
Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the performance of systems. Energy systems, specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that facilitate the adoption and deployment of these systems. Services are provided that aid in enhancing energy educational activities . The services represent the quantity of energy generation as energy demands that the students may appreciate. Furthermore, the services are interactive and may allow the students to change System Parameters so that they more fully understand the influence of these parameters on the energy generation efficiency.
Abstract:
Systems and methods are provided for collecting, aggregating, and analyzing data associated with the installation and deployment of systems. Energy systems, (500) specifically renewable energy generation systems, are used as examples. The aggregated data serve as the basis for a variety of services that improve the system performance, improve the installation, lower the cost, and provide. monitoring and service to maintain optimum performance, Finally, services are provided that facilitate the optimization of responses to poor system performance based on criticality of the failure, servicing of the system by a Certified VAR, or other prioritization method.