Abstract:
Processes and apparatus for treating fibrous materials for subsequent processing are described. Such processes and apparatus are able to provide a continuously high throughput, e.g., 400 pounds per hour or more, while achieving an acceptable degree of cleanliness and uniformity with a substantial absence of formation of neps. In a preferred embodiment the fiber treatment unit includes a train of rolls adjacently mounted for rotation about parallel axes. Adjacent rolls rotate in opposite directions and each is provided with a plurality of fiber grabbing, card clothing teeth. A number of additional carding points about the rotating cylinders are provided. Numerous trash removing assemblies adjacent the rotating rolls provide for removal of trash and other dry particles thus preventing escape of such particles into the atmosphere and minimizing health hazards at this and subsequent fiber process stages. In order to achieve the stated objective high capacity, the several rolls are rotated typically at excessively higher than conventional card peripheral velocities.The process and apparatus described may be used to provide a very fine opening, with orientation, and cleaning as one stage in multi-stage cotton fiber total systems which may involve processing from initial greige bale to greige fiber supply package to a finisher card to produce card sliver for yarn spinning, or the output from the very fine opening and cleaning fiber treatment unit may be used for batch kier or continuous chemical cleaning to supply non-woven or yarn spinning operations.
Abstract:
Processes and apparatus for treating fibrous materials for subsequent processing are described. Such processes and apparatus are able to provide a continuously high throughput, e.g., 400 pounds per hour or more, while achieving an acceptable degree of cleanliness and uniformity with a substantial absence of formation of neps. In a preferred embodiment, the fiber treatment unit includes a train of rolls adjacently mounted for rotation about parallel axes. Adjacent rolls rotate in opposite directions and each is provided with a plurality of fiber grabbing, card clothing teeth. A number of additional carding points about the rotating cylinders are provided. Numerous trash removing assemblies adjacent the rotating rolls provide for removal of trash and other dry particles, thus preventing escape of such particles into the atmosphere and minimizing health hazards at this and subsequent fiber process stages. In order to achieve the stated objective of high capacity, the several rolls are rotated typically at excessively higher than conventional card peripheral velocities.Fiber may be fed to the apparatus of the present invention either by a single feed roll/feed plate arrangement, or by a plurality of feed roll/feed plate arrangements. Various air suction devices may be arranged throughout the apparatus to assist in particulate matter removal. In some situations, particulate matter removal may be undesirable during specific portions of the process and such removal is therefore prevented by a selective placement of solid shrouding members.