摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60.degree. included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface.
摘要:
A crossflow vorticity sensor is provided for the detection of crossflow vorticity characteristics. The crossflow vorticity sensor is comprised of crossflow sensors (10) which are non-invasively adhered to swept wing laminar surface (12) either singularly, in multi-element strips (11), in polar patterns (40), or orthogonal patterns (41). These crossflow sensors (10) are comprised of hot-film sensor elements (18) which operate as a constant temperature anemometer circuit to detect heat transfer rate changes. Accordingly, crossflow vorticity characteristics are determined via cross-correlation. In addition, the crossflow sensors (10) have a thickness which does not exceed a maximum value h in order to avoid contamination of downstream crossflow sensors (10).
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
摘要:
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.