Abstract:
A method and apparatus is described for treating a target body surface using a radiation applicator. The therapeutic treatment apparatus adapted to conform to a patients body. The treatment apparatus comprises a plurality of light sources coupled with a flexible substrate, a light integrator in at least a portion of the optical path between the light source and the patient's body surface, a power supply, and a controller.
Abstract:
A submount for a light emitting stack includes a substrate and a metallization layer having circuit traces and a planar dielectric layer that fills regions between the circuit traces. The planar dielectric layer serves to minimize the amount of light lost/absorbed by the substrate and preferably reflects the internally reflected light back toward the desired light output element. To facilitate efficient manufacture, a dielectric paste is applied over the metallized layer, then planed to expose at least portions of the metal conductors for the subsequent coupling to the light emitting stack. Pedestal elements are preferably provided at select locations on the circuit traces to facilitate this coupling while allowing the remainder of the circuit traces to be covered with the dielectric layer.
Abstract:
A submount for a light emitting stack includes a substrate and a metallization layer having circuit traces and a planar dielectric layer that fills regions between the circuit traces. The planar dielectric layer serves to minimize the amount of light lost/absorbed by the substrate and preferably reflects the internally reflected light back toward the desired light output element. To facilitate efficient manufacture, a dielectric paste is applied over the metallized layer, then planed to expose at least portions of the metal conductors for the subsequent coupling to the light emitting stack. Pedestal elements are preferably provided at select locations on the circuit traces to facilitate this coupling while allowing the remainder of the circuit traces to be covered with the dielectric layer.
Abstract:
Methods of controlling stress in GaN films deposited on silicon and silicon carbide substrates and the films produced therefrom are disclosed. A typical method comprises providing a substrate and depositing a graded gallium nitride layer on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply. A typical semiconductor film comprises a substrate and a graded gallium nitride layer deposited on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply.