APPLICATION CONFIGURATION GENERATION
    1.
    发明申请
    APPLICATION CONFIGURATION GENERATION 有权
    应用配置生成

    公开(公告)号:US20120310870A1

    公开(公告)日:2012-12-06

    申请号:US13149701

    申请日:2011-05-31

    CPC classification number: G06F11/3688 G06F11/2247

    Abstract: Techniques for tuning systems generate configurations that are used to test the systems to determine optimal configurations for the systems. The configurations for a system are generated to allow for effective testing of the system while remaining within budgetary and/or resource constraints. The configurations may be selected to satisfy one or more conditions on their distributions to ensure that a satisfactory set of configurations are tested. Machine learning techniques may be used to create models of systems and those models can be used to determine optimal configurations.

    Abstract translation: 调整系统的技术生成用于测试系统以确定系统的最佳配置的配置。 生成系统的配置以允许在保持在预算和/或资源限制内的系统的有效测试。 可以选择配置以满足其分布上的一个或多个条件,以确保测试一组令人满意的配置。 机器学习技术可用于创建系统模型,这些模型可用于确定最佳配置。

    Application configuration generation
    2.
    发明授权
    Application configuration generation 有权
    应用程序配置生成

    公开(公告)号:US08898096B2

    公开(公告)日:2014-11-25

    申请号:US13149701

    申请日:2011-05-31

    CPC classification number: G06F11/3688 G06F11/2247

    Abstract: Techniques for tuning systems generate configurations that are used to test the systems to determine optimal configurations for the systems. The configurations for a system are generated to allow for effective testing of the system while remaining within budgetary and/or resource constraints. The configurations may be selected to satisfy one or more conditions on their distributions to ensure that a satisfactory set of configurations are tested. Machine learning techniques may be used to create models of systems and those models can be used to determine optimal configurations.

    Abstract translation: 调整系统的技术生成用于测试系统以确定系统的最佳配置的配置。 生成系统的配置以允许在保持在预算和/或资源限制内的系统的有效测试。 可以选择配置以满足其分布上的一个或多个条件,以确保测试一组令人满意的配置。 机器学习技术可用于创建系统模型,这些模型可用于确定最佳配置。

    TECHNIQUES FOR APPLICATION TUNING
    3.
    发明申请
    TECHNIQUES FOR APPLICATION TUNING 有权
    应用调试技术

    公开(公告)号:US20120310618A1

    公开(公告)日:2012-12-06

    申请号:US13149663

    申请日:2011-05-31

    CPC classification number: G06F11/3051 G06F11/302 G06F11/3447 G06F11/3457

    Abstract: Techniques for tuning systems generate configurations that are used to test the systems to determine optimal configurations for the systems. The configurations for a system are generated to allow for effective testing of the system while remaining within budgetary and/or resource constraints. The configurations may be selected to satisfy one or more conditions on their distributions to ensure that a satisfactory set of configurations are tested. Machine learning techniques may be used to create models of systems and those models can be used to determine optimal configurations.

    Abstract translation: 调整系统的技术生成用于测试系统以确定系统的最佳配置的配置。 生成系统的配置以允许在保持在预算和/或资源限制内的系统的有效测试。 可以选择配置以满足其分布上的一个或多个条件,以确保测试一组令人满意的配置。 机器学习技术可用于创建系统模型,这些模型可用于确定最佳配置。

    Techniques for application tuning
    4.
    发明授权
    Techniques for application tuning 有权
    技术应用调优

    公开(公告)号:US08954309B2

    公开(公告)日:2015-02-10

    申请号:US13149663

    申请日:2011-05-31

    CPC classification number: G06F11/3051 G06F11/302 G06F11/3447 G06F11/3457

    Abstract: Techniques for tuning systems generate configurations that are used to test the systems to determine optimal configurations for the systems. The configurations for a system are generated to allow for effective testing of the system while remaining within budgetary and/or resource constraints. The configurations may be selected to satisfy one or more conditions on their distributions to ensure that a satisfactory set of configurations are tested. Machine learning techniques may be used to create models of systems and those models can be used to determine optimal configurations.

    Abstract translation: 调整系统的技术生成用于测试系统以确定系统的最佳配置的配置。 生成系统的配置以允许在保持在预算和/或资源限制内的系统的有效测试。 可以选择配置以满足其分布上的一个或多个条件,以确保测试一组令人满意的配置。 机器学习技术可用于创建系统模型,这些模型可用于确定最佳配置。

Patent Agency Ranking