Abstract:
A system and method for preparing a stepped substrate and an apparatus are disclosed. The method comprises depositing photoresist on a stepped substrate, removing a first portion of the photoresist, reflowing the remaining portion of the photoresist; and etching a portion of the reflowed remaining photoresist and a portion of the stepped substrate. The apparatus comprises a deposited photoresist layer on a stepped substrate, wherein a portion of the photoresist is removed, a reflowed portion of the remaining photoresist, an etched portion of the reflowed photoresist, and an etched portion of the stepped substrate. The system for preparing a stepped substrate comprises a first processing tool for depositing at a portion of photoresist on the stepped substrate, a second processing tool for removing at least a first portion of the photoresist, a third processing tool for reflowing at least a portion of the remaining portion of the photoresist, and a fourth processing tool for etching a portion of the reflowed photoresist and a portion of the stepped substrate.
Abstract:
A clock including: a portable, at least partially evacuated housing; a cell being positioned within the housing and including an internal cavity having interior dimensions each less than about 1 millimeter, an intra-cavity pressure of at least about 760 Torr, and containing a metal atomic vapor; an electrical to optical energy converter being positioned within the housing to emit light through the metal atomic vapor; an optical energy intensity detector being positioned within the housing to receive the light emitted by the converter through the metal atomic vapor; at least one conductive winding around the cavity to stabilize the magnetic field experienced in the cavity dependently upon the detector; and, an output to provide a signal from the housing dependently upon the detector detecting the light emitted by the converter through the metal atomic vapor.