摘要:
A single-source solid precursor matrix for semiconductor nanocrystals includes 45-55% by weight of zinc, 28-35% by weight of oxygen, 0.70-1.2% by weight of carbon, 1.5-2.5% by weight of hydrogen, 4-6% by weight of nitrogen, 5-7% by weight of sulphur and 1-5% by weight of dopant ions with respect to the weight of zinc atoms. Doped semiconductor nanocrystals for multicolor displays and bio markers include 60-65% by weight of zinc, 30-32% by weight of sulphur, 1.2-1.3% by weight of copper and 1.2-1.3% by weight of dopant ions.
摘要:
Embodiments of the present disclosure disclose a Black box with Satellite Transmitter (BSAT) for underwater vehicles. The BSAT provides a mission data backup of sunken under water vehicles and it is akin to a black box recorder of aircrafts. The BSAT comprising a sealed enclosure to receive and transmit IR and electromagnetic signals, a Global Positioning System (GPS) with an antenna to provide GPS parameters of the BSAT, a transmit antenna to transmit the GPS parameters and parameters associated with the underwater vehicle, an ejection mechanism to eject the BSAT from the underwater vehicle on detecting a pre-defined condition, by an electronic controller. The electronic controller to perform at least one of sending control signals, communicating using IR transceiver, acquire and store underwater vehicle parameters, identifying an ejection instant, acquiring and storing data GPS parameters, scheduling data transmission through a satellite after ejection of the BSAT from the underwater vehicle.
摘要:
Embodiments of the present disclosure disclose a Black box with Satellite Transmitter (BSAT) for underwater vehicles. The BSAT provides a mission data backup of sunken under water vehicles and it is akin to a black box recorder of aircrafts. The BSAT comprising a sealed enclosure to receive and transmit IR and electromagnetic signals, a Global Positioning System (GPS) with an antenna to provide GPS parameters of the BSAT, a transmit antenna to transmit the GPS parameters and parameters associated with the underwater vehicle, an ejection mechanism to eject the BSAT from the underwater vehicle on detecting a pre-defined condition, by an electronic controller. The electronic controller to perform at least one of sending control signals, communicating using IR transceiver, acquire and store underwater vehicle parameters, identifying an ejection instant, acquiring and storing data GPS parameters, scheduling data transmission through a satellite after ejection of the BSAT from the underwater vehicle.
摘要:
The present invention relates to polymer composite materials, more particularly relates to composite materials with tailor made surface electrical resistivities in the range of 109 to 10−1 Ω/sq. and process of making the same. The process for preparing Fiber Reinforced Polymeric (FRP) Composite, said process comprising acts of homogeneously mixing 1-30% by weight of different electrically conducting fillers in matrix resin system to obtain resin mix; wetting dry preforms using the resin mix; compacting the wetted preforms to obtain green composite; curing the green composite; and post-curing the cured composite to prepare the FRP Composite.
摘要:
The present invention relates to polymer composite materials, more particularly relates to composite materials with tailor made surface electrical resistivities in the range of 109 to 10−1 Ω/sq. and process of making the same. The process for preparing Fibre Reinforced Polymeric (FRP) Composite, said process comprising acts of homogeneously mixing 1-30% by weight of different electrically conducting fillers in matrix resin system to obtain resin mix; wetting dry preforms using the resin mix; compacting the wetted preforms to obtain green composite; curing the green composite; and post-curing the cured composite to prepare the FRP Composite.
摘要:
A process for preparing a single source solid precursor matrix for semiconductor nanocrystals having the steps of: mixing 0.1-1 Molar of an aqueous/non-aqueous (organic) solution containing the first component of the host matrix with 0.001-0.01 Molar of an aqueous/non-aqueous solution containing the first dopant ions, which needs in situ modification of valency state, dissolving 10-20 milligram of an inorganic salt for the in situ reduction of the first dopant ion in the solution, addition of 0.001-0.01 Molar of an aqueous/non-aqueous solution of an inorganic salt containing the dopant ions which do not need modifications of their valency state, addition of 0.1-1 Molar of an aqueous/non-aqueous solution of an inorganic salt containing the second component of the host material, addition of 5-10% by weight of an aqueous solution containing a pH modifying complexing agent, to obtain a mixture, and heating the mixture to obtain a solid layered micro-structural precursor compound.
摘要:
A process for preparing a single source solid precursor matrix for semiconductor nanocrystals having the steps of: mixing 0.1-1 Molar of an aqueous/non-aqueous (organic) solution containing the first component of the host matrix with 0.001-0.01 Molar of an aqueous/non-aqueous solution containing the first dopant ions, which needs in situ modification of valency state, dissolving 10-20 milligram of an inorganic salt for the in situ reduction of the first dopant ion in the solution, addition of 0.001-0.01 Molar of an aqueous/non-aqueous solution of an inorganic salt containing the dopant ions which do not need modifications of their valency state, addition of 0.1-1 Molar of an aqueous/non-aqueous solution of an inorganic salt containing the second component of the host material, addition of 5-10% by weight of an aqueous solution containing a pH modifying complexing agent, to obtain a mixture, and heating the mixture to obtain a solid layered micro-structural precursor compound.
摘要:
A single-source solid precursor matrix for semiconductor nanocrystals includes 45-55% by weight of zinc, 28-35% by weight of oxygen, 0.70-1.2% by weight of carbon, 1.5-2.5% by weight of hydrogen, 4-6% by weight of nitrogen, 5-7% by weight of sulphur and 1-5% by weight of dopant ions with respect to the weight of zinc atoms. Doped semiconductor nanocrystals for multicolor displays and bio markers include 60-65% by weight of zinc, 30-32% by weight of sulphur, 1.2-1.3% by weight of copper and 1.2-1.3% by weight of dopant ions.