摘要:
A light-emitting device, including a mount substrate, at least one light emitting element, a first light transparent member, a second light transparent member and a covering member, is disclosed. The at least one light emitting element is disposed on the mount substrate in a flip-chip manner. The first light transparent member is configured to receive the incident light emitting from the light emitting element, wherein the first light transparent member is formed of an inorganic substance and an inorganic phosphor, and includes a top surface and a first side surface contiguous to the top surface. The second light transparent member is disposed on the top surface of the first light transparent member and is formed of the inorganic substance and contains no the inorganic phosphor, and includes an externally exposed light emission surface and a second side surface contiguous to the externally exposed light emission surface. The covering member comprises a light reflective material and covers at least the first side surface of the first light transparent member and at least the second side surface of the second light transparent member.
摘要:
An LED lamp and a component, a heat dissipating base and an LED wireless dimming system thereof are provided. The LED lamp component comprises a heat dissipating base, a light emitting module and a lens, the heat dissipating base has a bearing surface and a back surface opposite to the bearing surface, the bearing surface is provided with a first recessed section therein, the back surface is provided with heat dissipating structures; the heat dissipating base further comprises a first joint portion; the light emitting module is disposed in the first recessed section, and the lens covering the light emitting module.
摘要:
An LED lamp and a component, a heat dissipating base and an LED wireless dimming system thereof are provided. The LED lamp component comprises a heat dissipating base, a light emitting module and a lens, the heat dissipating base has a bearing surface and a back surface opposite to the bearing surface, the bearing surface is provided with a first recessed section therein, the back surface is provided with heat dissipating structures; the heat dissipating base further comprises a first joint portion; the light emitting module is disposed in the first recessed section, and the lens covering the light emitting module.
摘要:
A carrier leadframe, including a frame body and a carrier, is provided. The frame body includes at least one supporting portion, and the carrier includes a shell and at least one electrode portion and is mechanically engaged with the frame body via the supporting portion. A method for manufacturing the carrier leadframe as described above, as well as a light emitting device made from the carrier leadframe and a method for manufacturing the device, are also provided. The carrier leadframe has carriers that are separate in advance and mechanically engaged with the frame body, thereby facilitating the quick release of material after encapsulation. Besides, in the carrier leadframe as provided, each carrier is electrically isolated from another carrier, so the electric measurement can be performed before the release of material. Therefore, the speed and yield of production of the light emitting device made from the carrier leadframe is improved.
摘要:
Embodiments of a light emitting device, a surface mounted device-type light emitting device and a display device are provided. In one aspect, a light emitting device may include a main body and a light source. The main body may include a base and a number of terminals. The base may have a support surface. Each of the terminals may respectively have a welding portion such that the welding portions of the terminals form a connection surface with a first angle between the support surface and the connection surface. The first angle may be between 0 degree and 90 degrees. The light source may be disposed on the support surface and electrically connected to one or more of the terminals.
摘要:
Various examples of a carrier structure and lighting device are described. A carrier structure configured to carry an LED includes a housing and a lead frame. The housing defines a concavity. The lead frame includes a main board portion having a main board through hole, at least two insertion portions extending from the main board portion into the main board through hole, and two electrode portions configured to be electrically coupled to the LED. The housing is disposed over the at least two insertion portions with the at least two insertion portions inserted into the housing. The concavity of the housing expose the electrode portions. Each of the electrode portions has a respective protrusion sub-portion that extends outside of the housing. Additionally, a lighting device utilizing the carrier structure is also provided.
摘要:
A light-emitting device with multi-color temperature and multi-loop configuration is provided. The light-emitting device comprises a substrate, multiple light sources disposed on the substrate, and a light-emitting unit covering the light sources and at least a portion of the substrate. Each of the light sources is configured to emit a respective primary radiation. The light-emitting unit comprises multiple wavelength conversion components, each of which may include a respective fluorescent material. Each wavelength conversion component emits a respective converted radiation, upon absorbing a portion of the primary radiation from one or more of the light sources, and mixes the respective converted radiation with a portion of the primary radiation from the one or more of the light sources that is not absorbed to form a respective mixed radiation. Each wavelength conversion component is adjacent to, and at least partially contacts, at least another one of the wavelength conversion components.
摘要:
A lighting emitting diode (LED) device includes a first adjust module and a second adjust module. The first adjust module includes at least one first LED and has a first internal impedance having a first characteristic curve. A range covered by the first characteristic curve includes a first incomplete conduction region and a first conduction region. As the current increases from zero value and up, the first internal impedance decreases exponentially in the first incomplete conduction region, is approximately linear in the first conduction region. The second adjust module includes an impedance-providing component and an electronic component coupled in series. The second adjust module is coupled in parallel with the first adjust module. The second adjust module has a second internal impedance having a second characteristic curve. The first characteristic curve and the second characteristic curve match one another.
摘要:
A structure of a light emitting diode is provided. In one aspect, a light emitting diode structure comprises a light emitting diode, a conductive frame, and a substrate. The conductive frame is electrically connected to the light emitting diode and has a fixing hole connecting a first side of the conductive frame and a second side of the conductive frame opposite the first side. The fixing hole has a ladder-shaped inner sidewall with a first radius of the inner sidewall adjacent the first side smaller than a second radius of the inner sidewall adjacent the second side. The substrate has a conductive pillar that is received in the fixing hole by entering the fixing hole from the first side of the conductive frame and deformed such that the conductive pillar adheres to the ladder-shaped inner sidewall of the fixing hole.
摘要:
A method of operating a color-temperature-tunable device is described. The method drives a first light emitting diode (LED) chip with a first driving current from a first power source. The first LED chip is configured to emit a first light having a first peak wavelength. The method also drives a second LED chip with a second driving current from a second power source. The second LED chip is configured to emit a second light having a second peak wavelength. The method further maintains a total driving current, which includes the first driving current and the second driving current, approximately constant. The second peak wavelength is different from the first peak wavelength.