摘要:
A recording apparatus includes a recording unit that performs a recording operation to each layer by performing laser light illumination to a recording medium which has (n+1) or more layers as a recording layer and in which a test writing area of each layer is formed between at least n consecutive layers and at a position in which the test writing areas are not overlapped with each other when seen from a laser light incident surface side, and a controller that sets the n consecutive layers to be a recording target layer in the recording operation including a test writing for laser power adjustment and causes the recording unit to execute the recording operation to the n recording target layers, wherein n≧2.
摘要:
A power level is applied to a laser that heats a heat-assisted recording medium is increased during recording for a plurality of iterations. Each iteration involves writing test data to a plurality of sequential tracks of the recording medium using the power level and determining bit error rates of the test data. Based on the bit error rates of the iterations, a power boost profile is determined. The power boost profile starts at a baseline level at a first track of a plurality of sequentially-written tracks, incrementally increases to a steady-state level over a first portion of the tracks, and remains at the steady-state level over subsequent ones of the tracks. The power boost profile is applied to the laser when recording to the recording medium.
摘要:
An optical information recording medium has: a recording layer; a super-resolution functional layer; and a protective layer. Letting n be the refractive index of the protective layer with respect to a laser beam focused by a focusing optical system, λ, be the wavelength of the laser beam, and ds be the depth of recording marks, when the super-resolution functional layer is irradiated by the focused laser beam, it forms a focused light spot including central light that irradiates the recording marks and peripheral light that irradiates a region outside the central light. The optical information recording medium further satisfies either the condition that the central light has a positive phase difference with respect to the peripheral light and ds>λ/4n, or the condition that the central light has a negative phase difference with respect to the peripheral light and ds
摘要:
At least one laser input current is applied to a laser in a heat assisted magnetic recording device. Laser output power of the laser is measured at the at least one applied laser current. A relationship is characterized amongst temperature, applied laser input current and laser output power. Laser current is set to an optimal laser current as determined at manufacturing. A metric of recording performance is measured to determine if the relationship is acceptable.
摘要:
A system may have a data storage medium that contains at least one data bit that is accessed by a transducing head that has a near-field transducer. A controller can be connected to the transducing head and store a plurality of near-field transducer operating currents in a memory. The controller may identify a change in efficiency of the near-field transducer from the plurality of near-field transducer operating currents.
摘要:
The invention relates to recording on a medium, and in particular, to laser control during recording data on an optical medium. A laser control method for dynamically adjusting laser power during recording data onto an optical disc comprises: recording normal data onto the optical disc according to an initial laser power; stopping recording when a trigger is generated; reading back the recorded normal data and generating a first recording quality index; recording a test pattern at a test pattern starting point according to a selected laser power; reading back the test pattern and generating a second recording quality index; and determining an adaptive laser power to continually record the normal data according to the first recording quality index and the second recording quality index.
摘要:
An optical disc device includes an optical pickup unit including a semiconductor laser that shines a laser light, a light-receiving unit that receives the return light of the laser light, a high-frequency generating circuit that generates high-frequency signals, a pickup driver that generates a drive signal that drives the semiconductor laser based on the high-frequency signal, a control unit that controls the high-frequency generating circuit such that, in states in which playback of the optical disc is halted while irradiation with the laser light is being performed, the signal level of the high-frequency signal to be superimposed is set at a first signal level other than zero so as to be smaller than in states in which the playback is performed.
摘要:
An optical disk apparatus has: a laser (14) that outputs light; an optical system that includes an SIL (2) for forming a predetermined sized beam spot on an optical disk (1) using the light from the laser; a detector (26) that detects output power of the laser and generates a laser power detection signal; a laser power control circuit (27) that controls the output power of the laser using the laser power detection signal; a detector (10) that detects a gap length between the optical disk and the SIL and generates a gap detection signal; and a gap control circuit (15) that controls the gap length between the optical disk and the SIL using the gap detection signal. The power control circuit has a gain crossover frequency greater than a gain crossover frequency of the gap control circuit.
摘要:
An optical disc device includes an optical pickup unit including a semiconductor laser that shines a laser light, a light-receiving unit that receives the return light of the laser light, a high-frequency generating circuit that generates high-frequency signals, a pickup driver that generates a drive signal that drives the semiconductor laser based on the high-frequency signal, a control unit that controls the high-frequency generating circuit such that, in states in which playback of the optical disc is halted while irradiation with the laser light is being performed, the signal level of the high-frequency signal to be superimposed is set at a first signal level other than zero so as to be smaller than in states in which the playback is performed.
摘要:
In one embodiment of the present invention, an optical pickup for writing and reading data on an optical storage medium comprises a diffractive element for diffracting a light beam to split it into multiple light beams. The diffracted light beams includes a zero-order diffracted light beam for writing data on a track of the land or the groove of the optical storage medium and non-zero-order diffracted light beams for reading the data from the track. The diffractive element has first and second diffraction gratings that have mutually different grating vector directions and pitches. The first diffraction grating forms light beam spots on the same track by the non-zero-order and zero-order diffracted light beams. The second diffraction grating forms a light beam spot to extend to both sides of said track, or forms a light beam spot on one side of said track, by the non-zero-order diffracted light beams.