Abstract:
Several embodiments provide wireless extensions to an irrigation controller system and related methods of use, as well as other improvements to irrigation control equipment. In one implementation, an irrigation control system includes a transmitter unit including a controller and having a connector to be coupled to an irrigation controller having station actuation output connectors. The controller is configured to receive an indication that the irrigation controller has activated an irrigation station, and is also configured to cause the transmitter unit to transmit a wireless activation signal responsive to the indication. A receiver unit is coupled to an actuator coupled to an actuatable device, such as an irrigation valve, the actuator configured to actuate the irrigation valve to control the flow of water therethrough. The receiver unit receives the wireless activation signal and in response, causes the actuator to actuate the actuatable device.
Abstract:
The invention comprises devices and methods for providing operational power to a solar-powered irrigation control system. In one aspect, a method includes producing electrical energy from light, storing the electrical energy in a capacitive module, and operating an irrigation controller using the stored electrical energy independent of another power source. In another aspect, a device includes a control system comprising a computer having a programmed irrigation schedule which operates at least one irrigation device, a photovoltaic power module, and a capacitive module connected to said photovoltaic power module to store the electrical energy provided by the photovoltaic power module, where the capacitive module provides power for the control system to operate the at least one irrigation device independent of another power source.
Abstract:
Various embodiments are described in which different irrigation controllers in an irrigation control system have machine code having a same code base. In one implementation, a first irrigation control unit comprises a processor and a medium storing a first set of machine code to be executed by the processor. The first set is based on a portion of source code on which a second set of machine code stored in a second irrigation control unit is based, and the first and second sets not identical to each other. The first and second irrigation control units are in a predefined hierarchical control relationship. In one variation, the first and second control units have at least related operating systems. In another variation, a central controller includes machine code developed from at least a portion of the same source code as machine code in a remote controller for simulation or execution purposes.
Abstract:
Various embodiments are described in which different irrigation controllers in an irrigation control system have machine code having a same code base. In one implementation, a first irrigation control unit comprises a processor and a medium storing a first set of machine code to be executed by the processor. The first set is based on a portion of source code on which a second set of machine code stored in a second irrigation control unit is based, and the first and second sets not identical to each other. The first and second irrigation control units are in a predefined hierarchical control relationship. In one variation, the first and second control units have at least related operating systems. In another variation, a central controller includes machine code developed from at least a portion of the same source code as machine code in a remote controller for simulation or execution purposes.
Abstract:
Several embodiments provide wireless extensions to an irrigation controller system and related methods of use, as well as other improvements to irrigation control equipment. In one implementation, an irrigation control system includes a transmitter unit including a controller and having a connector to be coupled to an irrigation controller having station actuation output connectors. The controller is configured to receive an indication that the irrigation controller has activated an irrigation station, and is also configured to cause the transmitter unit to transmit a wireless activation signal responsive to the indication. A receiver unit is coupled to an actuator coupled to an actuatable device, such as an irrigation valve, the actuator configured to actuate the irrigation valve to control the flow of water therethrough. The receiver unit receives the wireless activation signal and in response, causes the actuator to actuate the actuatable device.
Abstract:
An integrated actuator coil and decoder module for use in decoder-based irrigation control systems, and related methods of manufacture and installation, are provided herein. In one implementation, an irrigation control device comprises a body, decoder circuitry located within the body, a coil located within the body and coupled to the decoder circuitry, the coil adapted to develop an electromagnetic flux sufficient to cause actuation of a device controlling irrigation equipment in response to signaling from the decoder circuitry. Also included is an electrical connection coupled to the decoder circuitry and adapted to couple to a control wire path of a decoder-based irrigation control system. The decoder circuitry and the coil are integrated into a single device.
Abstract:
An integrated actuator coil and decoder module for use in decoder-based irrigation control systems, and related methods of manufacture and installation, are provided herein. In one implementation, an irrigation control device comprises a body, decoder circuitry located within the body, a coil located within the body and coupled to the decoder circuitry, the coil adapted to develop an electromagnetic flux sufficient to cause actuation of a device controlling irrigation equipment in response to signaling from the decoder circuitry. Also included is an electrical connection coupled to the decoder circuitry and adapted to couple to a control wire path of a decoder-based irrigation control system. The decoder circuitry and the coil are integrated into a single device.
Abstract:
An irrigation control system and method for controlling irrigation based on weather data. Weather data such as wind, temperature, solar radiation, humidity, and rainfall, may be collected at one or more weather stations for a region. The weather data may be compiled on a computer and transmitted to a paging broadcast service. The weather data may then be transmitted by the paging broadcast service to controller interfaces associated with irrigation systems throughout the region. The controller interfaces may adjust irrigation controllers associated with the irrigation systems based on the weather data such that the proper amount of water is applied. This allows the water to be used more efficiently and the health of the landscape to be improved.
Abstract:
An irrigation system includes a control arrangement which receives field information relating to an area to be irrigated and source information relating to one or more water sources which supply water to the irrigation system. The control arrangement optimizes an irrigation plan based on the field information and source information and then controls one or more irrigators in accordance with the plan. The control arrangement may pulse valves positioned on the irrigator on and off in order to control the amount of water applied to the land by individual outlets on the irrigator. Latching valves may be used.
Abstract:
Several embodiments provide wireless extensions to an irrigation controller system and related methods of use, as well as other improvements to irrigation control equipment. In one implementation, an irrigation control system includes a transmitter unit including a controller and having a connector to be coupled to an irrigation controller having station actuation output connectors. The controller is configured to receive an indication that the irrigation controller has activated an irrigation station, and is also configured to cause the transmitter unit to transmit a wireless activation signal responsive to the indication. A receiver unit is coupled to an actuator coupled to an actuatable device, such as an irrigation valve, the actuator configured to actuate the irrigation valve to control the flow of water therethrough. The receiver unit receives the wireless activation signal and in response, causes the actuator to actuate the actuatable device.