Abstract:
A nuclear reactor can include a pressure vessel for containing a pressurized moderator at a first pressure. The nuclear reactor can also include a plurality of fuel channels for a coolant fluid at a second pressure. The plurality of fuel channels are fluidly connected at inlet ends thereof to a coolant supply conduit and are adapted to receive nuclear fuel bundles and to be mounted within the pressure vessel and surrounded by the moderator. The outlet ends of the fuel channels are fluidly connected to a coolant outlet conduit to enable the coolant fluid to circulate from the coolant supply conduit through the fuel channels to the coolant outlet conduit. The plurality of fuel channels maintain separation between the coolant fluid circulating within the fuel channels and the moderator.
Abstract:
The present invention relates to a lower end fitting for reducing flow resistance due to an in-core instrument in a nuclear fuel assembly, that is, a lower end fitting (100) having a plurality of flow holes for a nuclear fuel assembly, in which the flow holes (121) are formed under an assembly groove in which an instrumentation tube (131) for a nuclear fuel assembly is inserted, and at least two or more flow holes (121) are formed at a predetermined distance from the central axis (C) of the instrumentation tube (131).
Abstract:
This leakage prevention seal is provided with: a first seal ring which surrounds a rotating shaft and which is in circumferential contact with the surface of a housing which faces the upstream side; a second seal ring, which, on the upstream side of the first seal ring, surrounds the rotating shaft and which is in circumferential contact with the first seal ring; and a heat-driven section which, when high-temperature pressurized water reaches the heat-driven section, reduces the diameter of both the first seal ring and the second seal ring and causes the inner peripheral surfaces of both the first seal ring and the second seal ring to be in contact with the rotating shaft. The circumferential positions of both a first range between the first seal ring and the rotating shaft and a second range formed by the second seal ring are different.
Abstract:
A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.
Abstract:
An annulus spacer for a fuel channel assembly of a nuclear reactor. The fuel channel assembly includes a calandria tube and a pressure tube positioned at least partially within the calandria tube. The annulus spacer includes a garter spring configured to surround a portion of the pressure tube to maintain a gap between the calandria tube and the pressure tube. The garter spring includes a first end and a second end. The annulus spacer also includes a connector coupled to the first end and the second end of the garter spring. The connector allows movement of the annulus spacer when the pressure tube moves relative to the calandria tube during thermal cycles of the fuel channel assembly. The annulus spacer further includes a girdle wire positioned substantially within the garter spring and configured to form a loop around the pressure tube.
Abstract:
A feed water distributing system for a nuclear power plant contains feed water distributers disposed within a reactor pressure vessel. The feed water distributing system has a consistent feed water distribution when starting up and during a partial load operation with low mechanical loads and has a redundancy of the individual components while maintaining the customary level of reliability in nuclear power plants. Each feed water distributer has exactly one annular main body with an inner channel, at least one fill socket which is fluidically connected to the inner channel via at least one fill opening, and a plurality of outlet nozzles which are fluidically connected to the inner channel. Each of the fill sockets of one feed water distributer is fluidically connected to each outlet nozzle of the feed water distributer.
Abstract:
The pressurized water reactor according an embodiment comprises: a cylindrical reactor pressure vessel (1) to which inlet nozzles are connected; fuel assemblies which are contained within the reactor pressure vessel (1); a cylindrical reactor core barrel (3) which surrounds the fuel assemblies and forms an annular downcomer (6) between the reactor core barrel (3) and the inner surface of the reactor pressure vessel (1); and radial supports. The radial supports are supports which are arranged below the downcomer (6) at intervals in the circumferential direction, each has vertical flow path formed therein, and position the reactor core barrel (3) and the reactor pressure vessel (1). The radial supports each has, for example, a flow path-equipped radial keys (21) and a key groove member (40).
Abstract:
A riser cone has a lower end sized to engage a cylindrical lower riser section of a nuclear reactor and an upper end sized to engage a cylindrical upper riser section of the nuclear reactor. The riser cone defines a compression sealing ring that is compressed between the lower riser section and the upper riser section in the assembled nuclear reactor. In some embodiments the riser cone comprises: a lower element defining the lower end of the riser cone; an upper element defining the upper end of the riser cone; and a compliance spring compressed between the lower element and the upper element. In some embodiments the riser cone comprises a frustoconical compression sealing ring accommodating a reduced diameter of the upper riser section as compared with the diameter of the lower riser section.
Abstract:
A drain sump of a reactor containment vessel having a containment vessel floor down below a reactor pressure vessel, and includes a heat-proof sump cover and two or more drain flow paths. The drain sump is arranged inside the containment vessel floor. The heat-proof sump cover has a thickness, and covers an upper part of the drain sump. The thickness allows a top surface of the sump cover to lie in the same surface as a top surface of the containment vessel floor. The drain flow paths pass through the sump cover in a thickness direction to flow water therethrough and solidify a molten corium therein. The molten corium is produced in the unlikely event of a severe accident.
Abstract:
Fuel assemblies include an outer channel having a physical configuration optimized for a position of the fuel assembly within a core of a nuclear reactor. The position of the fuel assembly with respect to an employed control blade in the nuclear reactor determines if the outer channel may be thickened, reinforced, and/or fabricated of Zircaloy-4 or similar distortion-resistant material, so as to reduce or prevent distortion of the channel against the control blade, or thinned so as to increase water volume and enhance reactivity in the assembly. Reactor cores having configured fuel assemblies include fuel assemblies having different outer channels. Methods include determining operational characteristics of the fuel assembly, including likelihood of being placed directly adjacent to an employed control blade, and physically selecting or modifying the outer channel of the fuel assembly based thereon.