Abstract:
A method and a device for establishing an evolved packet system EPS bearer are disclosed. The method includes establishing, by a first base station to which UE belongs, a first EPS bearer based on a first CC for the UE, wherein the first EPS bearer is an EPS bearer between the first base station and the UE; and instructing, by the first base station, a second base station to establish a second EPS bearer based on a second CC for the UE, wherein the second EPS bearer is an EPS bearer between the second base station and the UE. The present invention enables the UE to aggregate carriers of different frequency ranges from the first base station to which the UE belongs and the second base station to which the UE belongs to transmit data, thus improving the throughput of the data transmitted by the UE.
Abstract:
Disclosed are a data transmission method, apparatus and system in a heterogeneous network. The data transmission method in a heterogeneous network comprises: a macro base station carrying control information in a subframe, transmitting the control information to a terminal in a control-frequency band, and informing a low power node of the control information; according to the control information, the low power node carrying data information in a subframe and transmitting the data information to a terminal by a data-frequency band; the control-frequency band and the data-frequency band are statically deployed, and the control-frequency band and the data-frequency band are non-overlapped.
Abstract:
A method, a system and an apparatus can be used for transmitting data in a CA manner. A first base station currently serving a user equipment (UE), creates EPS bearers under different component carriers CC Groups for the UE. The UE sets different access stratum entities corresponding to the CC Groups to process data in the process of creating the EPS bearers. The UE determines, when transmitting or receiving data, a corresponding CC Group according to an EPS bearer that bears the data. An access stratum entity corresponding to the CC Group processes the data that needs to be transmitted or received, a site is a first base station currently serving the UE or a second base station currently serving the UE.
Abstract:
A random access method, an evolved Node B (eNB), and a terminal equipment are provided. The method includes: determining target component carriers to which a User Equipment (UE) is to be handed over, and notifying the UE of information about the target component carriers through a source eNB; and after receiving a dedicated random access preamble sent by the UE, sending a random access response message on at least one component carrier in the target component carriers. The terminal equipment includes: a handover command receiving unit, a sending unit, and a random response receiving unit. Therefore, in a random access procedure of cell handover, the eNB is capable of determining downlink component carriers that a UE monitors, thereby increasing utilization rate of downlink resources.
Abstract:
A method and a relay node (RN) for Un subframe configuration processing are disclosed. The method includes: receiving, by an RN, a radio resource control (RRC) reconfiguration message sent by an eNodeB (eNB), where the RRC reconfiguration message includes subframe reconfiguration information of the RN; and applying, by the RN, a RRC reconfiguration immediately upon reception of the RRC reconfiguration message, and applying a Un subframe reconfiguration. The foregoing technical solution can implement the Un subframe configuration of the eNB and the RN and improve communication quality.
Abstract:
Disclosed are a data transmission method, apparatus and system in a heterogeneous network. The data transmission method in a heterogeneous network comprises: a macro base station carrying control information in a subframe, transmitting the control information to a terminal in a control-frequency band, and informing a low power node of the control information; according to the control information, the low power node carrying data information in a subframe and transmitting the data information to a terminal by a data-frequency band; the control-frequency band and the data-frequency band are statically deployed, and the control-frequency band and the data-frequency band are non-overlapped.
Abstract:
A method and a relay node (RN) for Un subframe configuration processing are disclosed. The method includes: receiving, by an RN, a radio resource control (RRC) reconfiguration message sent by an eNodeB (eNB), where the RRC reconfiguration message includes subframe reconfiguration information of the RN; and applying, by the RN, a RRC reconfiguration immediately upon reception of the RRC reconfiguration message, and applying a Un subframe reconfiguration. The foregoing technical solution can implement the Un subframe configuration of the eNB and the RN and improve communication quality.
Abstract:
In accordance with an embodiment, a method includes: mapping, based on an attribute of a protocol data unit (PDU) set, a PDU in the PDU set to one or more transmission paths, wherein each transmission path of the one or more transmission paths has a different characteristic; and sending the PDU in the PDU set on the one or more transmission paths, where a quantity of the one or more transmission paths is less than or equal to a quantity of attribute values of a same type of attribute of the PDU set.
Abstract:
Example communication methods and apparatus are described. One example method includes determining by a terminal that a first transmission resource conflicts with a second transmission resource. The first transmission resource is a resource used by the terminal to send first information to a first network side device. The first network side device corresponds to a first user identity supported by the terminal. The second transmission resource is a resource used by the terminal to send second information to a second network side device. The second network side device corresponds to a second user identity supported by the terminal. The terminal sends the first information on the first transmission resource. The terminal cancels sending the second information on the second transmission resource. Alternatively, the terminal sends the second information on a third transmission resource, where the third transmission resource is a resource before or after the second transmission resource.
Abstract:
A communication method includes establishing, by a communication device, a first connection to a first network device and a second connection to a second network device. The first connection and the second connection are used to process a first service. The method also includes sending, by the communication device, first information to the first network device based on the communication device determining that a second service needs to be processed. The second service is different from the first service. The first information is used to request to disable the first connection or the second connection, or the first information is used to indicate the communication device to establish a third connection to a third network device. The third connection is used to process the second service.