Abstract:
An uplink transmission power control method and a user equipment are provided, where the method includes: determining, by a UE, whether uplink channels are simultaneously transmitted over adjacent subframes between multiple carriers; where the adjacent subframes between the multiple carriers are partially overlapped; and timing advance values of the multiple carriers are different; and if uplink channels are simultaneously transmitted over adjacent subframes between multiple carriers, processing, by the user equipment, an uplink channel transmitted over the last symbol on a partially overlapped subframe of another carrier except a carrier having the greatest timing advance value, so that total transmission power of the uplink channels is lower than the maximum transmission power or an interference level of the user equipment.
Abstract:
Embodiments of the present disclosure provide a data transmission method, a base station and user equipment. The method includes: sending, by a first base station, first information to a second base station, or receiving, by the first base station, the first information sent by the second base station, wherein the first information is used for indicating that the second base station is to serve user equipment; sending, by the first base station, second information to the user equipment, wherein the second information is used for instructing the user equipment to operate on a carrier corresponding to the second base station, for enabling the user equipment to operate on the carrier corresponding to the second base station. By adopting the embodiments of the present disclosure, the probability of wrong scheduling of high-capacity user equipment is reduced, and the performance loss caused by wrong scheduling is avoided.
Abstract:
Embodiments of the present invention relate to the field of communications technologies, and provide a method for transmission by using scheduling signaling, and an apparatus, which can avoid a problem of insufficient processes, increase a quantity of processes that can be supported by scheduling signaling, and increase HARQ processes or transport blocks in a HARQ process that can be used in single-subframe scheduling or multi-subframe scheduling, without increasing scheduling signaling overheads. The method specifically includes: receiving, by user equipment UE, scheduling signaling sent by a base station, where the scheduling signaling includes a HARQ process number field; acquiring a subframe number of a subframe scheduled by using the scheduling signaling; determining a transport block according to the HARQ process number field and the subframe number; and processing data in the transport block. The present invention is applied to scheduling signaling transmission.
Abstract:
Embodiments of the present invention provide a communication method for a carrier aggregation system. The communication method includes receiving physical downlink share channel PDSCH information sent by a base station through a subframe n of a secondary cell. If a subframe n of a primary cell is a downlink subframe, an ACK/NACK of the sent PDSCH information is fed back on a subframe m or a subframe p of the primary cell.
Abstract:
Embodiments of the present invention provide a communication method for a carrier aggregation system. The communication method includes receiving physical downlink share channel PDSCH information sent by a base station through a subframe n of a secondary cell. If a subframe n of a primary cell is a downlink subframe, an ACK/NACK of the sent PDSCH information is fed back on a subframe m or a subframe p of the primary cell.