Abstract:
A seal assembly that includes a rotatable seal component, a non-rotatable seal component, and a plurality of pairs of flexures. The non-rotatable seal component is disposed facing the rotatable seal component. The plurality of pairs of flexures is spaced apart from each other along a circumferential direction of the seal assembly. Each pair of the plurality of pairs of flexures has a center line and includes a first flexure and a second flexure disposed in a stressed condition such that a portion of the first flexure and a portion of the second flexure are in contact with each other. Further, the first end of the first flexure is inclined at a first angle relative to the center line and a first end of the second flexure is inclined at a second angle relative to the center line. Also, first end of the first flexure and a first end of the second flexure are coupled to each other and to the non-rotatable seal component.
Abstract:
A flexible seal for sealing between two adjacent gas turbine components includes a forward end, an aft end axially separated from the forward end, and an intermediate portion between the forward end and the aft end. The intermediate portion defines a continuous curve in the circumferential direction, such that the aft end is circumferentially offset from the forward end. In other cases, the forward and aft ends are axially, radially, and circumferentially offset from one another. A method of sealing using the flexible seal includes inserting, in an axial direction, the aft end of the flexible seal into a recess defined by respective seal slots of two adjacent gas turbine components; and pushing the flexible seal in an axial direction through the recess until the forward end is disposed within the recess.
Abstract:
A thrust bearing assembly for a machine includes a stator housing, a fluid film thrust bearing, and a ring bearing. The stator housing surrounds at least a segment of a rotor shaft and one or more runners on the rotor shaft that include a first runner surface and a second runner surface facing in opposite axial directions along the rotor shaft. The fluid film thrust bearing is axially held between a first stator surface of the stator housing and the first runner surface. The fluid film thrust bearing is configured to generate a fluid cushion that blocks the first runner surface from engaging the fluid film thrust bearing. The ring bearing is axially held between a second stator surface of the stator housing and the second runner surface. The ring bearing has an annular contact surface that engages the second runner surface to axially support the rotor shaft.
Abstract:
A thrust bearing assembly for a machine includes a stator housing, a fluid film thrust bearing, and a ring bearing. The stator housing surrounds at least a segment of a rotor shaft and one or more runners on the rotor shaft that include a first runner surface and a second runner surface facing in opposite axial directions along the rotor shaft. The fluid film thrust bearing is axially held between a first stator surface of the stator housing and the first runner surface. The fluid film thrust bearing is configured to generate a fluid cushion that blocks the first runner surface from engaging the fluid film thrust bearing. The ring bearing is axially held between a second stator surface of the stator housing and the second runner surface. The ring bearing has an annular contact surface that engages the second runner surface to axially support the rotor shaft.
Abstract:
A seal assembly, for example, a face seal assembly for a machine such as a turbomachine, and an associated method of operating the seal assembly in the machine are disclosed. The seal assembly includes a rotatable seal component, a non-rotatable seal component, and a plurality of pairs of flexures. The non-rotatable seal component is disposed facing the rotatable seal component. The plurality of pairs of flexures is spaced apart from each other along a circumferential direction of the seal assembly. Each pair of the plurality of pairs of flexures includes a first flexure and a second flexure disposed in a stressed condition such that a portion of the first flexure and a portion of the second flexure are in contact with each other. Further, an end of the first flexure and an end of the second flexure are coupled to each other and to the non-rotatable seal component.
Abstract:
Provided herein are methods for increasing the life of blowout preventers comprising directing self-healing materials to regions of high stress or strain in the blowout preventers.
Abstract:
An actuation system to control clearance in a turbomachine including a shaft bearing including at least one axially displaceable thrust bearing. The axially displaceable thrust bearing configured to axially displace a rotating component relative to a stationary component to control the clearance therebetween. The system further including a plurality of actuators coupled to the at least one axially displaceable thrust bearing and configured to actuate the at least one axially displaceable thrust bearing to control the clearance. The plurality of actuators is configured to deactivate a diametrically opposed actuator in the event of an actuator failure to maintain zero moment. In a topography network, each diametrically opposed actuator pair is coupled to a single control line. In an alternate topography network, alternating actuators are coupled to a single control line. In addition, a method of actuating a thrust bearing to control clearance in a turbomachine is disclosed.
Abstract:
A compliant plate seal assembly for a turbo machine includes a rotor and a stationary component. A plurality of compliant plates are coupled circumferentially to the stationary component. A natural frequency of each compliant plate varies from a natural frequency of adjacent compliant plates and/or gaps between adjacent plates to produce a zero-oscillation state between adjacent compliant plates in flow.