摘要:
A pole-layer-encasing layer made of a nonmagnetic material is disposed on an underlying layer made of a nonmagnetic conductive material. The encasing layer has a groove that penetrates. A pole layer is disposed in the groove. The pole layer is formed by plating through feeding a current to the underlying layer. A polishing stopper layer made of a nonmagnetic conductive material is disposed on the top surface of the encasing layer. The polishing stopper layer indicates the level at which polishing for controlling the thickness of the pole layer is stopped. The polishing stopper layer has an opening that penetrates, and the edge of the opening is located directly above the edge of the groove located in the top surface of the encasing layer.
摘要:
A thin-film magnetic head structure has a configuration adapted to manufacture a thin-film magnetic head configured such that a main magnetic pole layer including a magnetic pole end part on a side of a medium-opposing surface opposing a recording medium, a write shield layer opposing the magnetic pole end part so as to form a recording gap layer on the medium-opposing surface side, and a thin-film coil wound about the write shield layer or main magnetic pole layer are laminated. The main magnetic pole layer has an end face joint structure where respective end faces of the magnetic pole end part and a yoke magnetic pole part having a size greater than that of the magnetic pole end part are joined to each other, and a surface with a flat surface on a side closer to the thin-film coil.
摘要:
A thin-film magnetic head for perpendicular magnetic recording according to the present invention comprises a coil to generate a magnetic field, and a main pole layer to perform the perpendicular recording using the magnetic field generated by said coil. The lower surface as to the layer-forming direction of said main pole layer has irregularities at the medium-facing surface side end.
摘要:
A pole layer incorporates: a first portion having an end face located in a medium facing surface; and a second portion having a thickness greater than that of the first portion. A surface of the first portion closer to a substrate is located farther from the substrate than a surface of the second portion closer to the substrate. A surface of the first portion farther from the substrate is located closer to the substrate than a surface of the second portion farther from the substrate. At least a portion of the pole layer is placed in an encasing groove formed in a region extending from a first encasing layer through a second encasing layer to a nonmagnetic metal layer.
摘要:
A thin-film magnetic head for perpendicular magnetic recording comprises a coil, a main magnetic pole layer for performing perpendicular recording, a write shield layer and a write gap layer, wherein the main magnetic pole layer comprises a main pole film portion and a yoke pole film portion. The write shield layer has a first shield film portion for determining a throat height, and the thickness of the first shield layer is smaller than the thickness of the yoke pole film portion.
摘要:
A magnetic head comprises: an encasing layer having a groove; a nonmagnetic metal layer that has a sidewall located directly above the edge of the groove and that is disposed on a region of the encasing layer away from the medium facing surface; two side shield layers that have sidewalls located directly above the edge of the groove and that are disposed adjacent to the nonmagnetic metal layer on regions of the encasing layer closer to the medium facing surface than the nonmagnetic metal layer; and a pole layer. The pole layer is placed in an encasing section formed of the groove of the encasing layer, the sidewall of the nonmagentic metal layer, and the sidewalls of the two side shield layers. The two side shield layers have end faces located in the medium facing surface on both sides of the end face of the pole layer, the sides being opposed to each other in the direction of track width.
摘要:
A method of manufacturing a magnetic head for perpendicular magnetic recording that includes a pole layer and a pole-layer-encasing layer. The method includes the steps of: forming a nonmagnetic layer that will be formed into the pole-layer-encasing layer; forming a polishing stopper layer on the top surface of the nonmagnetic layer, the polishing stopping layer being made of a nonmagnetic conductive material and having a penetrating opening with a shape corresponding to the plane geometry of the pole layer; forming a groove in the nonmagnetic layer by selectively etching a portion of the nonmagnetic layer exposed from the opening; forming a magnetic layer to be the pole layer such that the groove is filled; and polishing the magnetic layer until the polishing stopper layer is exposed, so that the magnetic layer is formed into the pole layer.
摘要:
A magnetic head comprises a pole layer, a shield layer, a gap layer disposed between the pole layer and the shield layer, and a coil. The shield layer incorporates a first layer, a second layer, a third layer and a fourth layer that are disposed on the gap layer one by one. The first layer has an end face located in a medium facing surface. The second layer has: a first surface located in the medium facing surface; a second surface touching the first layer; and a third surface opposite to the second surface. The third layer touches the third surface of the second layer. An end face of each of the third and fourth layers closer to the medium facing surface is located at a distance from the medium facing surface.
摘要:
A thin-film magnetic head is manufactured as follows. First, a base insulating layer having a magnetic pole forming depression sunken into a form corresponding to the main magnetic pole layer is formed, a stop film for CMP is formed such as to fill the magnetic pole forming depression, and then a magnetic layer is formed on the stop film. Next, the magnetic layer is separated by forming a separation groove substantially surrounding the magnetic pole forming depression on the outside thereof, and thus separated magnetic layer is formed with a cover insulating film adapted to cover the whole upper face. The surface is polished by CMP until the stop film is exposed, so that the part of magnetic layer remaining on the inside of the magnetic pole forming depression is used as the main magnetic pole layer. Further, a recording gap layer, a write shield layer, and a thin-film coil are formed.
摘要:
A slider comprises a slider body and a head element. The slider body has an air bearing surface, an air inflow end and an air outflow end. The air bearing surface has: a first surface including two portions extending in a direction of air passage; a second surface including a portion disposed between the two portions of the first surface; and a third surface located closer to the air outflow end than the first surface is. The first surface and the second surface have such a difference in level that the second surface is located farther from a recording medium than the first surface is. The difference in level varies gradually so as to increase with decreasing distance from the air outflow end. A method of manufacturing the slider includes forming a slider material containing a portion to be the slider body and the head element, and processing the material so as to form the air bearing surface.