摘要:
Aspects of a method and system for signal generation via a PLL with undersampled feedback are provided. In this regard, the output of a VCO may clock a DDFS to generate a sampling frequency, and the output of the VCO may be undersampled at the sampling frequency to generate a feedback signal for controlling the VCO. Additionally, a control word for controlling the DDFS may be generated, and may be based on a phase difference between the feedback signal and a reference signal. The sampling frequency may be determined such that an aliasing product of the undersampling occurs at a frequency of the reference signal. Also, the feedback signal may be filtered to select a desired aliasing product from a plurality of aliasing products. The output of the VCO may be frequency divided before clocking the DDFS, and a divisor of the division may be programmatically controlled.
摘要:
Aspects of a method and system for signal generation via a PLL with a DDFS feedback path are provided. In this regard, a phase difference between a reference signal and a feedback signal may be utilized to control a VCO, wherein the feedback signal is generated by a DDFS. Voltage, current and/or power levels of the generated feedback signal may be limited to a determined range of values. Moreover, the feedback signal may be based on an output of the VCO and a digital control word input to the DDFS. The digital control word may be programmatically controlled by, for example, a processor. Additionally, the control word may be determined based on a desired frequency of the generated feedback signal and a desired output frequency of the VCO. Accordingly, the DDFS may be clocked by the output of the VCO, or by a divided down version of the VCO output.
摘要:
Aspects of a method and system for generation of signals up to extremely high frequencies using a delay circuit are provided. In this regard, a variable delay circuit may be adjusted such that an output signal generated by the delay circuit may be twice the frequency of a signal input to the delay circuit. The adjustment may be via an variable capacitance and/or a variable number of delay elements utilized to generate the output signal. Moreover, the adjustment may be based on a signal strength of the output signal. In this regard, the delay may be adjusted to maximize the signal strength of the output signal. The input signal may be delayed to generate a second signal that is 90° phase shifted relative to the input signal. The second signal and the input signal may be mixed to generate the output signal. The output signal may be filtered by a bandpass filter centered at twice the frequency of the input signal. Accordingly, the center frequency of the bandpass filter may be tunable.
摘要:
Aspects of a method and system for polar modulating OFDM signals with discontinuous phase may include amplifying an OFDM signal via a plurality of amplifiers such that a combined gain of the plurality of amplifiers comprises a coarse amplitude gain and an amplitude offset gain. A gain of one or more of the plurality of amplifiers may be adjusted to set the coarse amplitude gain, and a gain of one or more remaining ones of the plurality of amplifiers may be adjusted to set the amplitude offset gain. The setting of the coarse amplitude gain and/or the amplitude offset gain may be adjusted dynamically and/or adaptively.
摘要:
Methods and systems for communicating via flip-chip die and package waveguides are disclosed and may include communicating one or more signals between sections of an integrated circuit via one or more waveguides integrated in a multi-layer package. The integrated circuit may be bonded to the multi-layer package. The waveguides may be configured via switches in the integrated circuit or by MEMS switches integrated in the multi-layer package. The signals may include a microwave signal and a low frequency control signal that may configure the microwave signal. The low frequency control signal may include a digital signal. The waveguides may comprise metal and/or semiconductor layers deposited on and/or embedded within the multi-layer package.
摘要:
An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
摘要:
Aspects of a method and system for inter-PCB communication utilizing a spatial multi-link repeater are provided. In this regard, a signal may be transmitted between printed circuit boards via one or more repeaters, wherein the repeaters may frequency shift received signals to generate repeated signals. Each of the repeated signals may be generated by quadrature down-converting said received signal by mixing the received signal with a first LO signal pair, up-converting the down-converted signal by mixing it with a second LO signal pair, and adding or subtracting an in-phase portion and a quadrature-phase portion of the up-converted signal. Each repeated signal may comprise one or more signal components and a phase and/or amplitude of each of the components may be controlled to control a directivity of the repeated signals. The repeater may reside on one of the plurality of printed circuit boards.
摘要:
Aspects of a method and system for processing signals via an oscillator load embedded in an IC package are provided. In this regard, a hybrid circuit may comprise an oscillator, and a frequency of the oscillator may be controlled via a digital control word. Furthermore, the hybrid circuit may comprise an integrated circuit bonded to a multi-layer package and at least a portion of the oscillator may be within and/or on the multi-layer package. The at least a portion of the oscillator may be fabricated in one or more metal layers of the multi-layer package. The at least a portion of the oscillator in the multi-layer package may be fabricated utilizing microstrip and/or stripline transmission line. A frequency of the oscillator may be controlled via one or more inductors and/or capacitors in the portion of the oscillator in the multi-layer package.
摘要:
Aspects of a method and system for using a transformer for FM transmit and FM receive functionality may include communicating radio frequency signals via an antenna coupled to primary windings of a radio frequency transformer, wherein secondary windings of the radio frequency transformer may be utilized for receiving and/or transmitting the communicated radio frequency signals. The secondary windings may be utilized as a load of a power amplifier used for the transmitting. By applying an electrical signal at a terminal of the secondary windings, the secondary windings and/or the power amplifier may be biased. Receiving and transmitting may be operated in time division duplex mode or simultaneously. The electrical signal applied at the center terminal may be a biasing voltage. By using a plurality of capacitors, DC signal components for receiving may be blocked.
摘要:
Methods and systems for processing signals via directional couplers embedded in an integrated circuit package are disclosed and may include generating via a directional coupler, one or more output RF signals that may be proportional to a received RF signal. The directional coupler may be integrated in a multi-layer package. The generated RF signal may be processed by an integrated circuit electrically coupled to the multi-layer package. The directional coupler may include quarter wavelength transmission lines, which may include microstrip or coplanar structures. The directional coupler may be electrically coupled to one or more variable capacitances in the integrated circuit. The variable capacitance may include CMOS devices in the integrated circuit. The directional coupler may include discrete devices, which may be surface mount devices coupled to the multi-layer package or may be devices integrated in the integrated circuit. The integrated circuit may be flip-chip bonded to the multi-layer package.