APPARATUS AND METHOD FOR PRODUCING A THREE-DIMENSIONAL WORK PIECE

    公开(公告)号:US20220355380A1

    公开(公告)日:2022-11-10

    申请号:US17617345

    申请日:2020-06-10

    Abstract: An apparatus for producing a three-dimensional work piece is provided. The apparatus comprises an irradiation unit comprising at least one scanning unit configured to scan a radiation beam over an uppermost layer of raw material powder to predetermined sites of the uppermost layer of the raw material powder in order to solidify the raw material powder at the predetermined sites. An axis corresponding to the radiation beam when it impinges on the uppermost layer of raw material powder at an angle of 90° is defined as a central axis for the scanning unit. The apparatus further comprises a control unit configured to receive work piece data indicative of at least one layer of the three-dimensional work piece to be produced, and assign at least a part of a contour of the layer of the three-dimensional work piece to the at least one scanning unit. According to a first aspect, the control unit is configured to generate control data for controlling the irradiation unit, the control data defining a scan strategy of the radiation beam such that for more than 50% of a predefined length, the radiation beam moves away from the central axis, the predefined length being defined as a length the radiation beam moves along the contour assigned to the at least one scanning unit, excluding sections concentric with regard to the central axis. Further, corresponding methods and computer program products are provided.

    SYSTEMS AND METHODS FOR LASER PROCESSING SYSTEM CHARACTERIZATION AND CALIBRATION

    公开(公告)号:US20220339705A1

    公开(公告)日:2022-10-27

    申请号:US17241888

    申请日:2021-04-27

    Abstract: A method of characterizing an optical system of a laser processing system includes directing an energy beam through a plurality of portions of a sample by adjusting an orientation of an adjustable beam redirection element of the optical system in accordance with a predetermined movement pattern to form a plurality of test patterns in the sample at each portion. The optical system comprises an imaging system having an expected focal position. In the movement pattern, the energy beam is directed in a plurality of different directions in the sample in the formation of each test pattern. At least two of the plurality of test patterns are formed at different calibration distances from an expected focal position of the optical system. An accuracy of the expected focal position is determined by detecting a level of modification in the sample caused by the energy beam at the plurality of test patterns.

    ADDITIVE MANUFACTURING APPARATUS
    76.
    发明申请

    公开(公告)号:US20220297192A1

    公开(公告)日:2022-09-22

    申请号:US17636372

    申请日:2019-11-11

    Abstract: The additive manufacturing apparatus includes: a height measurement unit outputting a measurement result of height at a measurement position of a build object formed on a workpiece during additive processing; and a control unit controlling a processing condition in performing new stacking at the measurement position in accordance with the measurement result. The height measurement unit includes a measurement illumination system irradiating the measurement position with measurement illumination light, an optical axis of the measurement illumination light is inclined with respect to an optical axis of a light receiving optical system, and the measurement illumination light is continuously emitted in an angular range of at least ±90 degrees with reference to a direction opposite a direction of supply of the processing material with the optical axis of the light receiving optical system as a center of a rotational angle range.

    LASER POWDER BED FUSION FORMING DEVICE AND METHOD FOR LARGE-SIZE RING/FRAME-SHAPED METAL PIECE

    公开(公告)号:US20220203450A1

    公开(公告)日:2022-06-30

    申请号:US17680324

    申请日:2022-02-25

    Abstract: A laser powder bed fusion forming device for a large-size ring/frame-shaped metal piece. Said device includes a forming cylinder, a substrate, a galvanometer array and a dust removal module. The forming cylinder is ring/frame-shaped and is adapted to the inner and outer contours of the ring/frame-shaped metal piece to be formed. The substrate is also ring/frame-shaped and is arranged inside the forming cylinder. The galvanometer array is located above the forming cylinder, includes a plurality of galvanometer systems, and the corresponding scanning areas thereof cover the upper surface of the forming cylinder. The dust removal module is located between the forming cylinder and the galvanometer array, and is used for forming a circulating air flow field which is distributed along the radial direction of the ring-shaped metal piece or along the circumscribed circle of the horizontal cross-section of the frame-shaped metal piece or along some other specific directions.

    ADDITIVE MANUFACTURING
    78.
    发明申请

    公开(公告)号:US20220193783A1

    公开(公告)日:2022-06-23

    申请号:US17540182

    申请日:2021-12-01

    Inventor: Shuichi KAWADA

    Abstract: An additive manufacturing apparatus of the disclosure includes: a supply port that supplies an inert gas to a chamber; a supply nozzle which is attached to the supply port and releases two layers of airflow having different speeds toward the window; and a discharge port that discharges the inert gas from the chamber. The supply nozzle has: a first nozzle member having an inlet surface connected to the supply port; a net-like member which has a plurality of through holes and is attached in a manner of covering a portion of a lower part of an outlet surface of the first nozzle member; and a second nozzle member that is attached to the upper side of the outlet surface of the first nozzle member.

    DEVICE AND METHOD FOR GENERATIVELY PRODUCING A THREE-DIMENSIONAL OBJECT

    公开(公告)号:US20210252601A1

    公开(公告)日:2021-08-19

    申请号:US17252478

    申请日:2019-06-21

    Abstract: A flow device serves for a device (1) for producing a three-dimensional object (2) by a layer-wise selective solidification of a building material (15) at locations corresponding to the cross-section of the object (2) to be produced in the respective layer by irradiation by means of an energetic radiation (22, 22′), the device comprising a gas conveying device for generating a gas stream (50, 51, 52, 53, 54, 55) and a process chamber (3) with a build area (8) for building the object (2). The process chamber (3) comprises at least a first gas inlet (31, 32) for introducing a gas stream into the process chamber (3), and a first gas outlet (34) and a second gas outlet (33) spaced from the first gas outlet (34) for discharging a gas stream from the process chamber (3). The first gas outlet (34) is arranged closer to the build area (8) than the second gas outlet (33) in a direction perpendicular to the build area (8), and the first gas outlet is provided substantially within a first height range of the process chamber (3) with respect to its extension in a direction perpendicular to the build area (8) and the second gas outlet is provided substantially within a second height range of the process chamber (3) with respect to its extension in a direction perpendicular to the build area (8), wherein the first height range of the process chamber corresponds to a lower third of a distance of the build area (8) from a process chamber ceiling (4a) and the second height range of the process chamber (3) corresponds to the upper four fifths of the distance of the build area (8) from the process chamber ceiling (4a).

Patent Agency Ranking