Abstract:
A system and method for holding and warming food held in pans or trays having a low relative magnetic permeability, such as 300-series stainless steel, using induction heating.
Abstract:
A consumer unit (7) for converting inductively transmitted electric power. The device comprises at least one secondary coil (5) for accepting power from a alternating electromagnetic field. The secondary coil (5) is electrically connected to at least one consumer in which the electric power is converted. The consumer unit (7) is designed as a replaceable module for an induction furnace (25).
Abstract:
A cooking hob, in particular an induction hob, includes several heating elements, at least one power electronics subassembly for generating a heating current for operating the heating elements, and a switching arrangement for making and breaking a connection between the power electronics assembly and the heating elements. The switching arrangement is constructed as an assembly that is separate from the power electronics assembly.
Abstract:
An electromagnetic module applied in an electronic apparatus having a circuit board is disclosed. The electromagnetic module includes a plate disposed on the circuit board, and an inductor coil assembly. The inductor coil assembly includes a magnetic core assembly, a first insulation layer and a coil, which are stacked on the plate in order. The inductor coil assembly is electrically connected to the circuit board for generating the electromagnetic induction, thereby the eddy current is generated to produce heat when a pot disposed on the electronic apparatus. In addition, a process for manufacturing an electromagnetic module, applied in an electronic apparatus is disclosed. The process includes the following steps: (a) providing a plate, (b) attaching a magnetic core assembly to the plate, (c) correspondingly disposing a first insulation layer on the magnetic core assembly, and (d) correspondingly disposing a coil on the first insulation layer.
Abstract:
A consumer unit (7) for converting inductively transmitted electric power. The device comprises at least one secondary coil (5) for accepting power from a alternating electromagnetic field. The secondary coil (5) is electrically connected to at least one consumer in which the electric power is converted. The consumer unit (7) is designed as a replaceable module for an induction furnace (25).
Abstract:
Among other things, light that carries information about cooking is directed in a first direction towards a redirection element and, at the redirection element, the light is redirected to be visible to a person cooking.
Abstract:
An electric heating assembly comprises a plate (2) having a front face (4) and a rear face (10), and at least one electric heater unit (8) located at the rear face (10) of the plate (2). The electric heater unit (8) is secured to the rear face (10) of the plate (2) by adhesive (20), the adhesive (20) being adapted to withstand a maximum temperature to which it is subjected during operation of the heating assembly.
Abstract:
A system and method for inductive heating, in which a power source provides current pulses with high-frequency harmonics to a heater coil, the coil generating a magnetic flux for inductive heating of an article. The high-frequency harmonics enhance a relative proportion of inductive heating, compared to resistive heating of the heater coil. Providing these high-frequency harmonics, occurring above the border frequency of the heating system, enables the system to deliver an increased proportion of inductive heating, compared to resistive heating, without requiring an increase in the Root Means Square (RMS) current in the coil. Providing better coupling between the coil and the core, such as by embedding the coil wholly or at least partially in the core, and providing a magnetic yoke to close the loop with the core, can provide a significantly decreased border frequency. This reduction of the border frequency then can be utilized to provide larger amounts of energy in the high-frequency harmonics of the current pulses, and thus provide a greater percentage of inductive heating without increasing the current in the coil. The current pulses preferably have steeply varying portions, such as a steeply varying leading edge and/or trailing edge.
Abstract:
An induction-heating cooking device includes: an insulating plate which is partially or entirely light-transmissive, and on which an object to be heated is placed; a heating coil provided under the insulating plate, for heating the object to be heated; display means for indicating a portion to be heated by the heating coil through the insulating plate; and output control means for controlling electrical conduction to the heating coil, wherein the display means includes light emitting means which is provided in the vicinity of a magnetic flux generated by the heating coil, and the light emitting means is laid and connected radially along a radial direction of the heating coil for indicating a portion to be heated by the heating coil.
Abstract:
A luminous device includes one or more line-shaped luminous units each including an elongated light guide, one or more light sources, and a reflective layer. The light guide has a generally flat luminous surface for emitting light and another surface disposed away from the luminous surface. The light source serves to provide light into the light guide. The reflective layer is disposed on the above-mentioned another surface of the light guide. The light guide may have a ring shape. Since the luminous device produces a continuous line-shaped luminous image, e.g., a ring-shaped luminous image, it may be used for clearly indicating a heating range of an induction heating cooker.