Abstract:
A process-level troubleshooting architecture (PLTA) configured to facilitate substrate processing in a plasma processing system is provided. The architecture includes a process module controller. The architecture also includes a plurality of sensors, wherein each sensor of the plurality of sensors communicates with the process module controller to collect sensed data about one or more process parameters. The architecture further includes a process-module-level analysis server, wherein the process-module-level analysis server communicates directly with the plurality of sensors and the process module controller. The process-module-level analysis server is configured for receiving data, wherein the data include at least one of the sensed data from the plurality of sensors and process module and chamber data from the process module controller. The process-module-level analysis server is also configured for analyzing the data and sending interdiction data directly to the process module controller when a problem is identified during the substrate processing.
Abstract:
A process debug method used to identify at least one excursive machine in a manufacturing process comprising the following steps: First, a series of validity identification data is collected, and the serial validity identification data is associated with its pathway to obtain a plurality of validity identification data sequences in corresponding to the machines. Subsequently, a sorting process is conducted to cluster the validity identification data sequence into several groups, and the clustered groups are ranked into a first order. The validity identification data sequences are subjected a continuity analysis to determine the continuity of the defects occurring in a particular machine. And the continuities of the machines involved in a particular group are ranked into a second order. Accordingly, the excursive machines causing the defective end products in the manufacturing process can be identified by the way of joining the second orders according to the first order.
Abstract:
A system and method to predict a failure of an imaging system that includes a radiation source having an x-ray tube assembly is provided. The system includes a storage medium having a plurality of programmable storage instructions to instruct a processor to perform the steps of acquiring an age of the x-ray tube assembly, calculating a baseline probability of a survivability of the tube assembly for a remaining time period dependent on the age of the tube assembly, acquiring measurement of at least one operating parameter of the x-ray tube assembly, and automatically changing the baseline probability of a survivability of the imaging system for the remaining time period in response to the measurement of the at least one operating parameter of the x-ray tube assembly.
Abstract:
A handheld communicator wirelessly interfaces or communicates with individual devices in a process control system, such as field devices, controllers, etc., to wirelessly perform monitoring, maintenance, configuration and control activities with respect to those devices. The wireless handheld communicator includes a housing adapted for handheld operation, a processing unit disposed within the housing, a computer readable memory disposed within the housing and coupled to the processing unit and a display, a keypad and a radio frequency transceiver. The handheld communicator may be adapted to communicate with a host system to receive information needed to communicate with various field devices in the process plant and may then be used to wirelessly communicate with each of the various field devices directly while in close proximity to the field devices to perform monitoring and configuration activities with respect to the field devices. Thereafter, information obtained from the field devices may be wirelessly communicated to the host system or to a repository, such as a data historian or a configuration database.
Abstract:
Embodiments of the invention may be used to produce a data mining signal by generating hybrid dataset representing data related to tools used during a semiconductor fabrication process. By selectively combining similar processes, the data mining signal strength of each tool used to perform the steps of the fabrication process may be increased. A combined process variable may be used to represent the group of tools and processes, collectively. A set of rules may be composed to determine which processes used in the semiconductor fabrication process should be combined in the hybrid dataset.
Abstract:
Disclosed are a method of managing a process and a process managing system in which a failure-generating process step can be quickly detected. The method of managing a process includes sequentially performing first to n-th (n is a natural number) process steps with respect to a plurality of wafers, the order that the plurality of wafers are processed in each of the n process steps are different from one another. Calculating characteristic parameter values for the plurality of wafers, calculating first to n-th relations that indicate relationships between the first to n-th process orders and the characteristic parameter values, performing a Fourier transform on the first to n-th relations so as to calculate first to n-th conversion relations, and determining the existence of patterns among the first to n-th relations using the first to n-th conversion relations.
Abstract:
A multiplexing control system has a common process input/output unit for distributing process signals from sensors for measuring the same state variable of a process to digital controllers. One process input/output unit for inputting/outputting a process signal between the multiplexing control system and plant is provided for each process signal. The process input/output unit for the process signal of high importance is triplexed. A process controller having an operating function is provided to each of the triplexed process input/output units. A process input/output unit for the process signal of intermediate importance is diplexed. A process input/output unit for the process signal of low importance is monoplexed. The process signals of the diplexed process input/output units and the monoplexed process input/output unit are controlled by a controller having a master right among the process controllers.
Abstract:
A system to and method of monitoring a condition of a process tool. The system monitors a condition of a process tool to correctly detect a faulty operation or malfunction of the process tool. The system to monitor the condition of the process tool includes a first model storage unit to store one or more good models generated by data associated with the process tool, a second model storage unit to store one or more faulty models generated by the data associated with the process tool, a model selector to receive tool data from the process tool, and to select one of the good models and one of the faulty models in association with the received tool data, and an error detector to receive process data from the process tool, to compare the received process data with the good and faulty models selected by the model selector, and to estimate a condition of the process tool.
Abstract:
A method of component management in a substrate processing system is disclosed. The substrate processing system has a set of components, at least a plurality of components of the set of components being designated to be smart components, each component of the plurality of components having an intelligent component enhancement (ICE). The method includes querying the plurality of components to request their respective unique identification data from their respective ICEs. The method further includes receiving unique identification data from the plurality of components if any of the plurality of components responds to the querying. The method additionally includes flagging the first component for corrective action if a first component of the plurality of components fails to provide first component unique identification data when the first component identification data is expected.
Abstract:
A method and system for aggregating and combining manufacturing data for analysis for the purposes of increasing manufacturing efficiency and reducing manufacturing downtime due to abnormal conditions. An embodiment provides for a method of dividing an entire manufacturing process into parts and further into subparts for the purposes of tracking the path that a workpiece takes during the entire manufacturing process. Data is measured specific to the path and assigned to a data set stored on a data processing device for analysis of the conditions for the workpiece being examined. An embodiment provides for quicker data analysis which may result in less manufacturing product being discarded due to lengthy delays between abnormal conditions and the response to those conditions. An embodiment provides for users to be alerted when abnormal conditions are present. In one example, a data processing device non-manually halts production when abnormal conditions are present.