Abstract:
A system is provided for use in brachytherapy where a central tube permits passage of a radioactive source therethrough to deliver a prescribed dosage of radiation. One or more balloons are coaxially positioned around the central tube. At least one balloon includes one or more peripheral tubes extending along at least a portion of the balloon. The peripheral tube is also attached to the high dose rate brachytherapy unit in order to permit passage of a radioactive source therethrough.
Abstract:
Apparatus for delivering brachytherapy to a target tissue region includes an elongate body including a proximal end, a distal end sized for introduction into a tissue tract and carrying a plurality of elongate members including pathways for receiving a source of radiation. The elongate members are movable between collapsed and expanded configurations. During use, a tract is created through tissue, and the elongate body carrying the elongate members is advanced through the tract into a target location with the elongate members in the collapsed configuration. The elongate members are directed to the expanded configuration at the target location, and radiation is delivered to treat tissue at the target location, e.g., by introducing one or more radiation sources along the pathways. The apparatus may include features to prevent overexpansion of the elongate members and/or to facilitate rapid collapse of the elongate members.
Abstract:
A method for brachytherapy in a lumpectomy cavity of a breast including, positioning a distal end of a brachytherapy device within the cavity, expanding an expandable surface portion located between proximal and distal ends of the device within the cavity, the source lumen tubes defining a curved configuration within the cavity; and positioning a source of radiation sequentially within one or more source lumens of the source lumen tubes according to a brachytherapy treatment plan. The device includes an inner tube, and a plurality of source lumen tubes located around the inner tube and including distal ends secured together with the inner tube at the distal end disposed within the body cavity, the source lumen tubes comprising proximal portions sufficiently long to extend outside the breast.
Abstract:
Apparatus for delivering brachytherapy to a target tissue region includes an elongate body including a proximal end, a distal end sized for introduction into a tissue tract and carrying a plurality of elongate members including pathways for receiving a source of radiation. The elongate members are movable between collapsed and expanded configurations. During use, a tract is created through tissue, and the elongate body carrying the elongate members is advanced through the tract into a target location with the elongate members in the collapsed configuration. The elongate members are directed to the expanded configuration at the target location, and radiation is delivered to treat tissue at the target location, e.g., by introducing one or more radiation sources along the pathways.
Abstract:
A brachytherapy treatment device includes at least one tubular insertion member and an expandable member. The tubular insertion member has proximal and distal ends and at least one radiation source lumen disposed along its length and branching at the distal end to provide a plurality of selectable radiation source lumens each configured to receive a radiation source. The expandable member is disposed on and surrounding the distal end of the tubular insertion member. In another embodiment, a brachytherapy treatment device may also include a plurality of selectable radiation source lumens forming an arcuate shape with respect to the longitudinal axis. Additional brachytherapy treatment devices and methods for performing brachytherapy and for forming an asymmetric radiation dosing profile are also disclosed.
Abstract:
The disclosure describes devices and methods for asymmetrical irradiation at a body cavity or site, such as after removal of tissue, e.g. biopsy or cancer. One device includes a lumen which is off-set or off-settable from a longitudinal axis to increase the intensity of radiation received from a radiation source by a first tissue portion surrounding the body cavity and to reduce or minimize radiation received by a second tissue portion (e.g. healthy tissue) surrounding the body cavity.
Abstract:
Apparatus for delivering brachytherapy to a target tissue region includes an elongate body including a proximal end, a distal end sized for introduction into a tissue tract and carrying a plurality of elongate members including pathways for receiving a source of radiation. The elongate members are movable between collapsed and expanded configurations. During use, a tract is created through tissue, and the elongate body carrying the elongate members is advanced through the tract into a target location with the elongate members in the collapsed configuration. The elongate members are directed to the expanded configuration at the target location, and radiation is delivered to treat tissue at the target location, e.g., by introducing one or more radiation sources along the pathways. The apparatus may include features to prevent overexpansion of the elongate members and/or to facilitate rapid collapse of the elongate members.
Abstract:
A brachytherapy device may include a plurality of rods, each configured to move between a straightened position and a bowed position, the plurality of rods configured to collectively form a shaft while each rod is in the straightened position and to collectively form at least one cage while at least some of the rods are in the bowed position, at least some of the rods having lumens that are configured to receive and hold radioactive material. A brachytherapy device may further include a rotatable mechanism configured to cause at least some of the plurality of rods to move between the straightened position and the bowed position upon rotation of the rotatable mechanism.
Abstract:
Apparatus for delivering brachytherapy to a target tissue region includes an elongate body including a proximal end, a distal end sized for introduction into a tissue tract and carrying a plurality of elongate members including pathways for receiving a source of radiation. The elongate members are movable between collapsed and expanded configurations. During use, a tract is created through tissue, and the elongate body carrying the elongate members is advanced through the tract into a target location with the elongate members in the collapsed configuration. The elongate members are directed to the expanded configuration at the target location, and radiation is delivered to treat tissue at the target location, e.g., by introducing one or more radiation sources along the pathways.
Abstract:
A brachytherapy device for treating tissue within a cavity of a body. The device may include a first set of tubes configured to be inserted into the cavity through an opening at the surface of the body. Each of the tubes may have an external end and an interior channel beginning at the external end that is configured to receive radioactive material. The external ends of the tubes may be bundled together. The tubes may be of a length that causes the external ends to be near the opening in the surface of the body while the tubes are in the cavity. A seal may be configured to prevent fluid that originates from the cavity from entering into the external ends of the tubes while they are near the opening in the surface of the body. The seal may include a gasket that is pressed against the external ends of the tubes. The gasket may have openings that align with channels within the external ends of the tubes.