Abstract:
An interference measurement method of a terminal is provided for facilitating downlink transmission in the mobile communication system based on Distributed Antenna System (DAS) in which multiple antennas controlled by a base station are distributed within the service area of the base station. The interference measurement method includes receiving channel measurement information and interference measurement information from a base station, receiving channel state information reference signals, calculating, when the received channel state information reference signal is for channel measurement, a received signal energy based on the channel measurement information and, when the received channel state information reference signal is for interference measurement, an interference based on the interference measurement information, generating channel quality information based on the received signal energy and the interference, and transmitting the channel quality information to the base station.
Abstract:
A data transmission method and an apparatus in a network supporting coordinated multipoint transmission are provided. The method includes transmitting candidate sets of initial state information used to generate Demodulation Reference Signal (DMRS) scrambling sequences for the transmission points to the UE, and transmitting an indication corresponding to at least one candidate set of initial state information respectively associated with at least one transmission point to the UE, wherein the initial state information is used by the UE to generate DMRS scrambling sequences.
Abstract:
Methods and apparatus are provided for beamforming and information feedback are provided. Signals for beams to be transmitted through corresponding antenna ports, are generated. The beams are formed by precoding the signals with beamforming vectors. The beams are sorted into a number of resource reuse groups based on a resource that is to be shared. The beams are transmitted, using resources allocated per group, to a receiver. Feedback information is generated on at least one antenna port, based on the received beams. The feedback information is transmitted to the transmitter. A beam is selected having a greatest gain for a transmitter using the feedback information. A transmission resource is allocated for the selected beam.
Abstract:
A downlink power control method and apparatus for improving downlink power efficiency gain in an Orthogonal Frequency Division Multiplexing (OFDM) system is provided. The downlink power control method includes transmitting a downlink data channel at a normal subframe according to first downlink power information for the normal subframe, and transmitting the downlink data channel at an Almost Blank Subframe (ABS) according to second downlink power information for the ABS, wherein the first downlink power information for the normal subframe and the second downlink power information for the ABS differ from each other. The downlink power control method and apparatus is capable of regulating inter-cell interference variation between contiguous symbols at a predetermined level in a subframe at a terminal of a neighbor cell and making it possible to schedule the UE receiving the low power data channel using the power ratio of the feedbacks from the UE.
Abstract:
The present disclosure relates to a 5G or 6G communication system for supporting a data transmission rate higher than that of a 4G communication system, such as LTE. According to one embodiment of the present disclosure, a base station of a communication system confirms a subcarrier spacing in which a signal is to be transmitted to or received from a terminal, transmits, to the terminal, a signal including information that indicates the allocation of additional symbols and/or the number of additional symbols, generates data allocation information for data on the basis of the allocation of the additional symbols, and transmits the data allocation information and the data to the terminal, wherein the additional symbols can be allocated to the predetermined part of a first slot at every 0.5 ms of boundary.
Abstract:
The present disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. The present disclosure provides a method for measuring self-interference by a first node and an apparatus for performing same, the method comprising the steps of: acquiring self-interference channel measurement configuration; transmitting a measurement signal for self-interference measurement on the basis of the self-interference channel measurement configuration; and on the basis of the self-interference channel measurement configuration, measuring the self-interference that occurs, by means of the measurement signal for the self-interference channel measurement.
Abstract:
An example electronic device may include a display module which is bent or unfolded, and includes a display for providing a content; a plurality of audio output modules for outputting an audio signal; an audio module for converting the audio signal to an analog signal or converting an analog signal to the audio signal; and a processor electrically connected to the display module, the plurality of audio output modules, and the audio module. The processor is configured to set the plurality of audio output modules to an output-available state, determine an audio output module to output the audio signal from among the plurality of audio output modules, on the basis of a flex state of the display, and transmit the audio signal, which is converted to an analog signal by the audio module, to the plurality of audio output modules, and the audio output module, which is determined to output the audio signal, from among the plurality of audio output modules outputs the audio signal converted to the analog signal.
Abstract:
An electronic device and method thereof for outputting audio data, the electronic device including: an audio module for outputting at least one of a piece of first audio data having a designated format or a piece of second audio data having a format different from the designated format; a memory configured to store instructions; and a processor configured to execute the instructions to: mix (hereinafter, first-mix) the at least one piece of second audio data, convert the first-mixed audio data into the designated format, mix (hereinafter, second-mix) the at least one piece of first audio data and the audio data converted into the designated format, post-process the second-mixed audio data; and transmit the post-processed audio data to the audio module to be output through the first sound output device.
Abstract:
A user equipment (UE) for transmitting and receiving signals in a wireless communication system according to an embodiment of the disclosure includes: a transceiver; and at least one processor configured to control the transceiver, wherein the at least one processor is further configured to control the transceiver to receive, from a base station (BS), full duplex carrier resource block (FD CRB) information, identify at least one resource block usable for uplink data transmission, based on the FD CRB information, and control the transceiver to transmit uplink data by using the identified at least one resource block.
Abstract:
The present disclosure relates to a communication technique for converging an IoT technology with a 5G communication system for supporting a higher data transfer rate beyond the 4G system, and a system therefor. The present disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail, security- and safety-related services, etc.) on the basis of 5G communication and IoT-related technologies. The present invention provides an apparatus and a method for supporting a full duplex operation in a wireless communication system.