FREQUENCY DOMAIN RESOURCE ALLOCATION FOR DOWNLINK (DL) AND UPLINK (UL) IN NEW RADIO (NR)

    公开(公告)号:US20230139455A1

    公开(公告)日:2023-05-04

    申请号:US16616487

    申请日:2018-06-15

    Abstract: In one embodiment, an apparatus includes memory storing instructions and processing circuitry coupled to the memory. The processing circuitry is to implement the instructions to select a resource block group (RBG) size configuration from a set of RBG size configurations based on a bandwidth part (BWP) size. Each RBG size configuration is to indicate RBG sizes associated with respective ranges of BWP sizes, and the RBG sizes are to indicate a number of frequency-domain physical resource blocks (PRBs) for physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) transmissions. The processing circuitry is further to implement the instructions to allocate PRBs for communication between the gNB device and a user equipment (UE) device via the PDSCH or PUSCH transmissions based on the selected RBG size, and to encode downlink control information (DCI) that indicates the allocated PRBs for transmission to the UE device.

    NB-IoT synchronization signals with offset information

    公开(公告)号:US10820257B2

    公开(公告)日:2020-10-27

    申请号:US15777641

    申请日:2016-06-29

    Abstract: Narrowband Internet of Things synchronization signals are described that carry offset information. In one example an evolved NodeB (eNB) to performs operations to transmit synchronization signals for time and frequency synchronization between the eNB and user equipments (UEs) for narrowband Internet of things (NB-Iot). The operations include concatenating a plurality of short ZadoffChu (ZC) sequences each having a different root index, the ZC sequences being ordered to indicate an offset for use by a UE, generating an NB-Iot Primary Synchronization Signal (NB-PSS) using the concatenation of short ZadoffChu (ZC) sequences, and transmitting the resulting NB-PSS by the eNB in a periodic manner to the UE, wherein, the offset is identified by the order of the ZC sequences.

    SYSTEMS AND METHOD FOR SELECTING CARRIER RESOURCES FOR NAROWBAND PHYSICAL RANDOM ACCESS CHANNEL PROCEDURES

    公开(公告)号:US20200187256A1

    公开(公告)日:2020-06-11

    申请号:US16316842

    申请日:2017-08-01

    Abstract: A Narrowband-Internet-of-Things (NB-IoT) device may select between multiple carrier resources (of an anchor carrier and/or non-anchor carriers) to perform a Narrowband Physical Random Access Channel (NPRACH) procedure. The NB-IoT device may determine, based on a reference signal from an enhanced NodeB (eNB), a coverage level for the NB-IoT device and receive carrier configuration information, from the eNB, that indicates the carriers (e.g., an anchor carrier and one or more non-anchor carriers) that are available for NPRACH procedure. The NB-IoT device may select a carrier resource from among the carriers based on factors, such as the coverage level of the NB-IoT device and the Reference Signals Received Power (RSRP) thresholds and Repetition levels of the carrier resources. The NB-IoT device may use the selected carrier resource to initiate the NPRACH procedure.

    UPLINK CONTROL INFORMATION (UCI) TRANSMISSION AND HYBRID AUTOMATIC REPEAT REQUEST (HARQ) PROCESS IDENTIFICATION FOR GRANT-FREE PHYSICAL UPLINK SHARED CHANNEL (PUSCH)

    公开(公告)号:US20200037314A1

    公开(公告)日:2020-01-30

    申请号:US16465977

    申请日:2018-06-27

    Abstract: An apparatus of a New Radio (NR) User Equipment (UE), a method and system. The apparatus includes baseband circuitry including a radio frequency (RF) interface and one or more processors coupled to the RF interface and configured to execute the instructions to: encode a plurality of Transport Blocks (TBs) and encode a first uplink transmission using the TBs and in a grant-free mode to a NR evolved Node B (gNodeB); decode a downlink control information (DCI) from the gNodeB; based on the DCI, encode a second uplink transmission using the TBs to the gNodeB, wherein the second uplink transmission is one of in a grant-free mode and in a grant-based mode, and wherein the DCI includes information on an identification (ID) for a hybrid automatic repeat request-acknowledge feedback (HARQ) process (HARQ process ID) corresponding to the second uplink transmission, the HARQ process ID being based on a resource configuration index corresponding to the second uplink transmission; and send the TBs, the first encoded uplink transmission, and the second encoded uplink transmission to the RF interface.

    Apparatuses, systems, and methods for probabilistic transmission of device-to-device (D2D) discovery messages

    公开(公告)号:US10517119B2

    公开(公告)日:2019-12-24

    申请号:US15505887

    申请日:2015-06-26

    Abstract: Embodiments described herein relate generally to techniques for device discovery for device-to-device (D2D) communications. A user equipment (UE) may receive a transmission probability (e.g., from an evolved Node B (eNB)) for transmission of a discovery medium access control (MAC) protocol data unit (PDU) for D2D communications. The UE may determine a pseudo-random number based on an identifier of the UE, information in the discovery MAC PDU, or information associated with a discovery period. The UE may compare the pseudo-random number with the transmission probability to determine whether to transmit the discovery MAC PDU in the discovery period. Another UE may also determine the pseudo-random number to determine whether the UE is to transmit the discovery MAC PDU in the discovery period. Other embodiments may be described and claimed.

    APPARATUS AND METHOD FOR IOT CONTROL CHANNEL
    77.
    发明申请

    公开(公告)号:US20190335428A1

    公开(公告)日:2019-10-31

    申请号:US16407159

    申请日:2019-05-08

    Abstract: Embodiments described herein include user equipment (UE), evolved node B (eNB), methods, and systems for narrowband Internet-of-Things (IoT) communications. Some embodiments particularly relate to control channel communications between UE and eNB in narrowband IoT communications. In one embodiment, a UE blind decodes a first control transmission from an evolved node B (eNB) by processing a first physical resource block comprising all subcarriers of the transmission bandwidth and all orthogonal frequency division multiplexed symbols of a first subframe to determine the first control transmission. In various further embodiments, various resource groupings of resource elements are used as part of the control communications.

    Device, system and method of quasi-orthogonal multiple access

    公开(公告)号:US10390292B2

    公开(公告)日:2019-08-20

    申请号:US15553363

    申请日:2015-10-19

    Abstract: An eNodeB (eNB), user equipment (UE) and method of providing a quasi-orthogonal multiple access (QOMA) resources are generally described. The UE receives allocation of orthogonal multiple access (OMA) and non-OMA (NOMA) resources. The UE transmits data up to a maximum NOMA rate and NOMA Modulation and Coding Scheme (MCS) using the NOMA resources without receiving an explicit transmission grant from the eNB. The eNB may allocate multiple NOMA regions associated with different maximum rates, MCSs, number of UEs, UE types, applications and sizes. If the data exceeds the NOMA conditions or the UE is unable to transmit data using the allocated NOMA resources or does not receive an acknowledgement from the eNB regarding reception of the transmitted data, the UE may request an explicit grant of the OMA resources from the eNB and, upon receiving an allocation of the OMA resources, subsequently transmit the data using the allocated OMA resources.

Patent Agency Ranking