Abstract:
A wireless communications method and a wireless communications system are disclosed. In an embodiment, the system includes a transmit end including a transmit module having at least two antenna units, the transmit module is configured to transmit M narrow beams with different spatial directions according to a quality of service requirement, and switches a transmit mode according to a preset switching rule, wherein a set of the spatial directions of the M narrow beams forms a transmit mode; a receive end including a receive module having at least two antenna units, the receive module is configured to receive N beams according to the QoS requirement, and a transmission channel is formed, wherein the receive end calculates transmission channel quality in different transmit modes, searches for a transmit mode that meets the QoS requirement, and feeds back the transmit mode to the transmit end.
Abstract:
Embodiments of the present invention provide a method for signal compensation. The method includes: receiving, by a receiver via N receiving antennas, a plurality of channel estimation preamble signals sent by M transmitting antennas of a remote transmitter, wherein the plurality of channel estimation preamble signals contain measurement signals of the M transmitting antennas; determining, by the receiver, channel estimation parameters and channel phase shift parameters according to the measurement signals of the M transmitting antennas of the remote transmitter; and determining, by the receiver, signal compensation according to the channel estimation parameters and the channel phase shift parameters. According to the method for signal compensation and the multiple-input multiple-output orthogonal frequency division multiplexing communication system provided by the embodiments of the present invention, accuracy of an estimated value of transmitted data is improved.
Abstract:
A transmitting circuit, a transceiver, a communication system, and a method for transmitting data. The transmitting circuit includes a digital interface circuit configured to obtain, in a predetermined bandwidth, data to be sent, and decompose the data into N parallel sub digital signal flows; a digital modulation circuit configured to modulate the N sub digital signal flows to obtain N modulated signals; a frequency relocation circuit configured to perform frequency relocation on the N modulated signals; a synthesizer configured to modulate M modulated signals of the N modulated signals that have undergone frequency relocation into a bandwidth signal; a digital to analog converter configured to receive the bandwidth signal, and perform digital to analog conversion on the bandwidth signal to obtain an analog signal; an up-conversion circuit configured to receive the analog signal, and convert the analog signal into a radio frequency signal.
Abstract:
The present invention provides a data stream processing method, device, and system. The data stream processing method includes: using a precoding parameter to perform precoding processing on an lth to-be-sent data stream of a current kth transmitting device, where the lth to-be-sent data stream includes a lattice point data stream mapped to a lattice grid; and sending the precoded lth to-be-sent data stream to a kth receiving device, where both l and k are positive integers. The technical solutions in the embodiments of the present invention can be helpful for filtering out interference, exactly complies with an actual processing procedure of an interfering data stream, and have strong practicability.
Abstract:
Methods and apparatus related to pulse-shaped and overlapped phase tracking reference signals are disclosed. Signaling that indicates information associated with first pulse shaping is communicated between a first communication device and a second communication device in a wireless communication network. Data with a phase tracking reference signal (PT-RS) is generated based on the first pulse shaping, and is transmitted and/or received as pulse-shaped PT-RS and data comprising the PT-RS and data to which second pulse shaping, different from the first pulse shaping, has been applied.
Abstract:
Embodiments of this application disclose a backscatter communication method and a related apparatus. The method includes: receiving, by a backscatter device, a first signal from an excitation device, the first signal carries a first sequence determined by the excitation device; modulating, by the backscatter device, backscatter device data to the first signal to obtain a second signal, wherein the backscatter device data is scrambled by the first sequence; backscattering, by the backscatter device, the second signal to a receiving device.
Abstract:
The present disclosure relates to pulse shaping-based reference signals. Signaling indicating information that is associated with pulse shaping and information associated with a target length of a sequence for a reference signal such as a demodulation reference signal (DMRS) is communicated between a first communication device and a second communication device in a wireless communication network. The reference signal is also communicated in the wireless communication network. The reference signal comprises a sequence of the target length to which the pulse shaping has been applied. The sequence comprises a base sequence that is determined based on the pulse shaping.
Abstract:
Embodiments of this application disclose a backscatter communication method and a related apparatus. The method includes: An excitation device determines a first sequence, generates a first signal, and sends the first signal, where the first signal carries the first sequence; after receiving the first signal, a backscatter device modulates backscatter device data onto the received first signal to obtain a second signal, and backscatters the second signal, to implement first scrambling on the backscatter device data by using the first sequence; and a receiving device determines the first sequence, receives the second signal from the backscatter device, and demodulates the received second signal based on the first sequence, to obtain the backscatter device data carried on the second signal.
Abstract:
This application provides a method and an apparatus for determining an effective time of a timing advance (TA). The method includes: determining a first subcarrier spacing from M subcarrier spacings, where the M subcarrier spacings are subcarrier spacings of L carriers used by a terminal device, and L≥M≥2; and determining an effective time of a timing advance (TA) of each of the L carriers based on the first subcarrier spacing.
Abstract:
This application provides a symbol processing method and related apparatus. The method includes: dividing a plurality of obtained complex-valued symbols into a plurality of sets, where each set corresponds to one transmit symbol, and the plurality of sets include a first set corresponding to a first transmit symbol; and mapping a first sequence and a second sequence to the first set, where an end position of the first sequence is a position of intercepting a cyclic prefix (CP) in the first transmit symbol, and an end position of the second sequence is an end position of the first transmit symbol. By mapping the sequences to the sets, an original cyclic prefix (CP) can be extended using a sequence with a flexible length, and flexible guard periods of different lengths can be configured for different users by adjusting the length of the sequences.