Abstract:
The movement of a rotating part of a machine is monitored by deriving a signal representing the motion of the rotating part, at least temporarily storing the derived signal, and analyzing the stored signal, with temporary storage being performed only on portions of the signal derived during spaced time intervals during each revolution of the rotating part.
Abstract:
A shaft torsion monitor comprises a plurality of sensors for sensing the angular position of various portions of the shaft under dynamic conditions and for producing sets of data representative of the sensed angular positions. A memory is provided for periodically storing one of the sets of data representative of the angular position of the various portions of the shaft in the absence of torsion. Circuitry is provided for subtracting the stored set of data from each of the other sets of data to eliminate the effects of noise. The resulting data is analyzed to determine the torsion experienced by the shaft.
Abstract:
A system for monitoring the clearance between a plurality of turbine blade shroud segments connected to form a turbine blade shroud and the stationary portion of the turbine comprises a sensor responsive to eddy currents generated in each of the shroud segments for producing input signals representative of the clearance between each shroud segment and the stationary portion of the turbine. Indicia are carried by the turbine blade shroud for causing the sensor to produce a known displacement signal. A processor is responsive to the input signals and the displacement signal for producing output signals indicative of the clearance between each shroud segment and the stationary portion of the turbine. The output signals have a predetermined relationship to the known displacement signal.
Abstract:
A method of determining the untwist of turbine blades under dynamic conditions is comprised of the steps of producing a first pair of blade passing event signals in response to a blade tip's movement past a pair of fixed sensors. The signals comprising the first signal pair are compared to one another to establish a first differential value. Another data point containing blade vibrational information is produced. The first differential value and the other data point are evaluated to discriminate between blade untwist and synchronous vibration. Based on the magnitude of the blade untwist, inferences can be drawn regarding the status of the turbine blade lashing wires.
Abstract:
Instrumentation and monitoring systems utilize, as differential temperature sensors, heated, split-well thermowells of duplex design, mounted to the sidewall of a pressure vessel and communicating through a penetration in the sidewall with the fluid state within the vessel. Each probe has at least one parallel axial bore therein, a related, selected pair of probes receiving respective heater and temperature sensing elements in the associated bores and together functioning as a differential temperature sensor producing distinguishable, differential temperature outputs representative of the presence of steam versus water. The systems monitor the differential temperature outputs of plural such sensors to produce alarm indications and perform verification and error checking of the sensor output indications. Duplex sensor embodiments permit toggling between different, selected such pairs of probes for on-line testing and verification of monitored conditions represented by the sensor output indications and of the operability of the elements and supporting circuits, under automatic and manual controls, and with on-line substitution of complementary elements in the event of element failure.
Abstract:
A light beam altering grid (20), having a graded slit density pattern (22), is mounted on a temperature responsive support structure (23) to traverse a light beam (28). The slit density (slit per unit length) of the grid (20) is greater at one end of the grid (20) and gradually reduces towards the opposite end of the grid (20). The grid (20) is disposed on a thermally responsive support (23) such as a bimetallic cantilever (23). The thermally responsive support (23) operates to bend by an amount dependent upon the temperature of the environment in which it operates. In this manner, the grid (20) disposed on the thermally responsive support (23) is positioned in dependence upon the environmental temperature. The grid (20) may be arranged, for example, such that at higher environmental temperatures, when the natural frequency of the support (23) is reduced, the grid (20) will be positioned such that the change in density of slit graduations intersecting the light beam (28) compensates for change in the vibration amplification factor of the bimetalic cantilever (23) caused by the elevated environmental temperature.
Abstract:
A method and apparatus for controlling the operation of a normally open bypass valve in a steam turbine air inleakage exhaust vent pipe. The valve is used to bypass a flowmeter connected in a bypass pipe parallel with the valve. The flowmeter provides signals indicative of bypassed flow. The method and apparatus compares the signals from the flowmeter to a reference signal corresponding to a first predetermined flow rate and generates a valve closure signal if the flow through the flowmeter is less than the predetermined flow rate. If the valve is closed, the signals from the flowmeter are used to display the actual air inleakage exhaust rate. If the flow exceeds a second predetermined value, a signal is generated to open the valve for bypassing the exhaust through the valve around the flowmeter. During the second mode of operation, the flowmeter indicates only approximate inleakage exhaust flow rate. If the flow drops below the first predetermined value, the valve is again closed and the flow rate is measured by the flowmeter.
Abstract:
A method and device for monitoring the operation of a component which is located in a sealed enclosure and is movable into a selected operating position in response to an activating signal uses the steps of: generating a short-duration acoustic signal in the enclosure in response to the movement of the component into the selected operating position; sensing the acoustic signal at the exterior of the sealed enclosure; and determining the time relationship between the activating signal and the acoustic signal. The acoustic signal is generated by an element which is carried by or moveable with the component and which generates the acoustic signal by striking an interior surface of the enclosure when the component moves into the selected operating position.
Abstract:
A method and apparatus for monitoring blade vibrations in a turbine engine having blade tip target portions associated with blades. An illumination conduit including a plurality of optical fibers conveys light from a light source to a transmission end of the optical fibers where the light is focused to define an axially elongated projected image. The blade tip target portions pass through the projected image and reflect light to a receptor array defined by receptor ends of a plurality of optical fibers forming an imaging conduit for conveying the reflected light to a sensor array. An imaging end of the imaging conduit radiates an image onto the sensor array that is identical to the reflected light image received at the receptor array to track tangential and axial movement of a predetermined point on the target portion.
Abstract:
A partial discharge coupler for detecting partial discharges in a conductor includes a frequency dependent network, a differential amplifier and a frequency selective coupling component. The frequency dependent network includes a first filter component, a fuse component and a load component, typically coupled together in series with reference to a first ground. The first filter component filters the high voltage, low frequency alternating current signal carried by the conductor from the load component and passes high frequency partial discharge pulse signals to the load component. The frequency selective coupling component couples in series between the differential amplifier and the load component. The output of the differential amplifier is configured to provide an output that is isolated from the ground connection for communicating detected partial discharge signals to partial discharge test equipment.