Abstract:
Provided are three-dimensional microstructures and their methods of formation. The microstructures are formed by a sequential build process and include microstructural elements which are mechanically locked to one another. The microstructures find use, for example, in coaxial transmission lines for electromagnetic energy.
Abstract:
The present invention concerns a design for an external cavity single mode laser wherein a short optical path length for the optical cavity (e.g., ˜3 to 25 mm) provides sufficient spacing of the longitudinal modes allowing a single wavelength selective element, such as a microfabricated etalon, to provide a single mode of operation, and optionally a selectable mode of operation.
Abstract:
The present invention provides a micro-optical device which may be used as an optical pigtailing assembly for waveguides. In an exemplary configuration the assembly includes a first chip which includes an optoelectronic component and an optical fiber. The optical fiber and optoelectronic component are coupled with an optical component, such as one or more waveguides on an integrated optic chip.
Abstract:
Optical interface assemblies are provided. The optical interface assemblies include a first portion having a plurality of optical waveguides. The first portion is configured for mating engagement with an optical fiber connector. A second portion is mated to the first portion. The second portion is configured for mating engagement with an electronic substrate that includes an embedded waveguide assembly. The first and second portions are further configured so as to align the plurality of optical waveguides, at a first end of the first portion, with a plurality of corresponding waveguide cores of the embedded waveguide assembly. The first and second portions are further configured so as to align the plurality of optical waveguides, at a second end of the first portion, with a plurality of corresponding optical fibers in the optical fiber connector. Also provided are electronic assemblies and methods for coupling optical fibers with electronic substrate embedded waveguides.
Abstract:
Provided are optoelectronic components which include an optoelectronic device and a structure for self-aligning the optoelectronic device. Also provided are optoelectronic modules and methods of forming optoelectronic components.
Abstract:
A first waveguide holding member has a first transverse surface region and a first optical waveguide having an end terminating at the first transverse surface region. A second waveguide holding member has a second transverse surface region which confronts the first transverse surface region of the first waveguide holding member and a second optical waveguide having an end terminating at the second transverse surface region. A guide member is operatively coupled to the first and second waveguide holding members and guides the first waveguide holding member in a transverse direction relative to the second waveguide holding member so as to selectively optically couple and decouple the ends of the first and second optical waveguides.
Abstract:
A first waveguide holding member has a first transverse surface region and a first optical waveguide having an end terminating at the first transverse surface region. A second waveguide holding member has a second transverse surface region which confronts the first transverse surface region of the first waveguide holding member and a second optical waveguide having an end terminating at the second transverse surface region. A guide member is operatively coupled to the first and second waveguide holding members and guides the first waveguide holding member in a transverse direction relative to the second waveguide holding member so as to selectively optically couple and decouple the ends of the first and second optical waveguides.
Abstract:
A micromachined structure, comprising: a substarte; a first wet etched pit disposed in the substrate; a second wet etched pit disposed in the substrate, the second pit extending into the substrate a greater depth than the first pit; and a dry pit disposed between, and adjacent to, the first and second pits. Also disclosed is a micromachined substrate comprising: a wet etched pit; and a dry-etched hole disposed in the wet etched pit, wherein the dry hole extends through the substrate.
Abstract:
An optical device package includes a substrate having a top portion with an a recess for receiving an optical semiconductor component and an elongated linear groove for receiving an optical fiber. The optical fiber is positioned within the groove in the substrate such that the tap surface of the optical fiber is substantially at or below the upper surface of the substrate and the optical fiber is operatively aligned with the optical semiconductor component for the transfer of optical signals therebetween. A frame is hermetically sealed to the upper surface of the substrate.
Abstract:
A method for constructing an optical switch and the switch constructed thereby are described. An optical switch having a pair of chips is assembled with a plurality of optical fibers mounted on the chips such that endfaces of the fibers extend beyond ends of the chips. The optical fibers may be mounted by adhering them to the chips. The endfaces of the fibers and the front surfaces of the chips are then polished to provide coplanar surfaces which are good optical couplers. The chips are then etched with an etchant material which is ineffective at etching the optical fibers. The chips may include a coating which is resistant to the etchant material.