Abstract:
In one embodiment, a device identifies inter-personal area network (PAN) traffic between a first PAN and a second PAN. The device identifies a network node in the first PAN associated with the inter-PAN traffic and determines that the network node should join the second PAN. The device causes the network node to join the second PAN, in response to determining that the network node should join the second PAN.
Abstract:
Utilizing multiple network interfaces when sending data and acknowledgement packages comprises, in a low power and lossy network (LLN) or other network, a sender device comprises two or more network interfaces for communicating with one or more recipient devices. The sender device assesses the transmission capabilities of the network interfaces to determine data rates available for each interface. The sender device specifies which network interface will be used to transfer data and which network interface will be used to receive an acknowledgement from the recipient device. The sender device selects the network interface with the larger data capacity for transmitting a data packet and the network interface with the smaller data capacity for receiving an acknowledgement. The data transmission and the acknowledgement transmission may be transmitted simultaneously. The recipient device uses transmission parameters received from the sender device to determine the data rate with which to transmit the acknowledgement.
Abstract:
In one embodiment, data packet messages are received in a Field Area Router (FAR) sent from one or more sources toward one or more destination devices in a Low-Power Lossy Network (LLN). An LLN routing topology for the data packet messages is interpolated in the FAR. An expected time for the data packet messages to reach a destination device in the LLN is determined based upon the routing topology interpolation. Traffic shaping is applied by the FAR for the data packet messages based upon the determined expected time for the data packet messages to reach destination devices in the LLN.
Abstract:
In one embodiment, liveness reporting is performed using a distributed approach. The embodiments include a management node that is configured to receive a message containing an indication of activity or inactivity of one or more subject nodes, and determine which of the one or more subject nodes are active based on the received message. The indication is derived from one or more observer nodes observing network traffic of the one or more subject nodes. The embodiments further include one or more observer nodes configured to observe network traffic of the one or more subject nodes in the network, generate the message containing the indication of activity or inactivity of the one or more subject nodes, and transmit the message to the management node.
Abstract:
In one embodiment, data packet messages are received in a Field Area Router (FAR) sent from one or more sources toward one or more destination devices in a Low-Power Lossy Network (LLN). An LLN routing topology for the data packet messages is interpolated in the FAR. An expected time for the data packet messages to reach a destination device in the LLN is determined based upon the routing topology interpolation. Traffic shaping is applied by the FAR for the data packet messages based upon the determined expected time for the data packet messages to reach destination devices in the LLN.
Abstract:
In one embodiment, a device in a network determines that a particular packet flow in the network is sensitive to packet reordering. The device determines whether a particular packet of the packet flow is to be routed differently than an immediately prior packet in the packet flow, in response to determining that the particular packet flow is sensitive to reordering. The device marks the particular packet as taking a different route than the immediately prior packet in the packet flow, prior to forwarding the marked packet and in response to determining that the particular packet is to be routed differently than the immediately prior packet in the packet flow.
Abstract:
In one embodiment, one or more neighboring nodes that neighbor a sending node in a channel-hopping network are determined. Each neighboring node has multiple channels on which a data packet can be received at a particular time according to a channel-hopping receive schedule. Then, a currently active channel of each neighboring node is determined, where a data packet can be received on the currently active channel at the current time. A channel quality of the currently active channel of each neighboring node is computed, and based on the computations, a transmission overhead is estimated for communicating with each neighboring node. A data packet can then be transmitted to the neighboring node that provides a path that minimizes the estimated transmission overhead.
Abstract:
In one embodiment, a device in a network receives a message from a neighboring device that identifies the electrical phase on which the message was sent. Crosstalk is identified between the device and the neighboring device by determining that the message was received on a different electrical phase than the phase on which the message was sent. One or more distinct communication channels between the device and the neighboring device are identified based on the identified crosstalk with each communication channel including or more electrical phases.
Abstract:
In one embodiment, a device in a network obtains information regarding a transmission between the device and a neighbor of the device in the network. The device determines whether to use the information regarding the transmission to update an expected transmission count associated with the neighbor based on a rate of samples used to compute expected transmission counts. The device updates the expected transmission count, in response to determining that the information regarding the transmission should be used to update the expected transmission count. The device selects a routing path in the network based in part on the updated expected transmission count associated with the neighbor.
Abstract:
In a multiple interface, low power and lossy network comprising a plurality of nodes, a low transmission power and medium transmission power topology are defined for the network and a channel-hopping schedule is defined for the devices operating in each topology. A sender determines that data is capable of being transmitted via a link on the low transmission power topology. The sender determines the transmission parameters for the transmission of the data over the link on the low transmission power topology and determines a low transmission power channel for transmission of the data. The sender transmits the determined channel and the transmission parameters to the receiver. The sender transmits the data via the determined channel in the low transmission power topology.