Abstract:
Generally described, physical computing devices in a virtual network can be configured to host a number of virtual machine instances. The physical computing devices can be operably coupled with offload devices. In accordance with an aspect of the present disclosure, a security component can be incorporated into an offload device. The security component can be a physical device including a microprocessor and storage. The security component can include a set of instructions configured to validate an operational configuration of the offload device or the physical computing device to establish that they are configured in accordance with a secure or trusted configuration. In one example, a first security component on the offload device can validate the operational computing environment on the offload device and a second security component on the physical computing device can validate the operational computing environment on the physical computing device.
Abstract:
Generally described, the present application relates to systems and methods for the managing virtual machines instances using a physical computing device and an offload device. The offload device can be a separate computing device that includes computing resources (e.g., processor and memory) separate from the computing resources of the physical computing device. The offload device can be connected to the physical computing device via a bus interface. The bus interface can be a high speed, high throughput, low latency interface such as a Peripheral Component Interconnect Express (PCIe) interface. The offload device can be used to offload virtualization and processing of virtual components from the physical computing device, thereby increasing the computing resources available to the virtual machine instances.
Abstract:
A formalized set of interfaces (e.g., application programming interfaces (APIs)) is described, that uses a security scheme, such as asymmetric (or symmetric) cryptography, in order to secure the results of privileged operations on systems such as the operating system (OS) kernel and/or the hypervisor. The interface allows a public key to be included into a request to perform a privileged operation on a hypervisor and/or kernel. The kernel and/or hypervisor use the key included in the request to encrypt the results of the privileged operation. In some embodiments, the request itself can also be encrypted, such that any intermediate parties are not able to read the parameters and other information of the request.
Abstract:
Methods and apparatus for transparent multipath utilization through encapsulation are disclosed. Respective encapsulation packets are generated for at least two different baseline packets transmitted between a source and destination linked by multiple network paths. Each encapsulation packet comprises contents of a corresponding baseline packet, and one or more data values selected in accordance with a path balancing policy. The data values added to one encapsulation packet may differ from those added to another. Different network paths to the destination may be selected for different encapsulation packets of a given transmission based at least in part on the added data values.
Abstract:
Generally described, the present application relates to systems and methods for the managing virtual machines instances using a physical computing device and an offload device. The offload device can be a separate computing device that includes computing resources (e.g., processor and memory) separate from the computing resources of the physical computing device. The offload device can be connected to the physical computing device via a interconnect interface. The interconnect interface can be a high speed, high throughput, low latency interface such as a Peripheral Component Interconnect Express (PCIe) interface. The offload device can be used to offload virtualization and processing of virtual components from the physical computing device, thereby increasing the computing resources available to the virtual machine instances.
Abstract:
Generally described, the present application relates to systems and methods for the managing virtual machines instances using a physical computing device and an offload device. The offload device can be a separate computing device that includes computing resources (e.g., processor and memory) separate from the computing resources of the physical computing device. The offload device can be connected to the physical computing device via a bus interface. The bus interface can be a high speed, high throughput, low latency interface such as a Peripheral Component Interconnect Express (PCIe) interface. The offload device can be used to offload virtualization and processing of virtual components from the physical computing device, thereby increasing the computing resources available to the virtual machine instances.
Abstract:
A DMA-capable device of a virtualization host stores a DMA write record, indicating a portion of host memory that is targeted by a DMA write operation, in a write buffer accessible from a virtualization management component of the host. The virtualization management component uses the DMA write record to identify a portion of memory to be copied to a target location to save a representation of a state of a particular virtual machine instantiated at the host.
Abstract:
Techniques are described for allocating resources to a task from a shared hardware structure. A plurality of tasks may execute on a processor, wherein the processor may include one or more processing cores and each task may include a plurality of computer executable instructions. In accordance with one technique for allocating resources to a task from a shared hardware structure amongst multiple tasks, aspects of the disclosure describe assigning a first identifier to a first task from the plurality of tasks, associating a portion of the shared hardware resource with the first identifier, and restricting access and/or observability for computer executable instructions executed from any other task than the first task to the portion of the hardware resource associated with the first identifier.
Abstract:
A request to launch a compute instance is received at a control plane of a provider network. At an outbound command communicator, an indication that a compute instance is to be established at a target host at a client premise is obtained. A first address is associated with the target host at the control plane and also assigned to the communicator. A message with a second address within a first network of the client premise as a destination is transmitted. The message comprises a command to establish the compute instance at the target host. The first address is assigned to the target host within a second network of the client premise. Processing of the command at the target host results in establishment of a compute instance.
Abstract:
At a first compute instance run on a virtualization host, a local instance scaling manager is launched. The scaling manager determines, based on metrics collected at the host, that a triggering condition for redistributing one or more types of resources of the first compute instance has been met. The scaling manager causes virtualization management components to allocate a subset of the first compute instance's resources to a second compute instance at the host.