Abstract:
Catalyst composition comprising chemically bound copper, phosphorus and oxygen used for oligomerizing olefins to C.sub.5 -C.sub.12 hydrocarbons. The preferred catalyst composition comprises a mixture of copper(II) orthophosphate, zirconium orthophosphate and aluminum orthophosphate, preferably formed by coprecipitation.
Abstract:
A hydrotreating (hydrovisbreaking) process comprises the step of contacting under suitable conditions (A) a substantially liquid hydrocarbon-containing feed stream containing more than 0.1 weight-% Ramsbottom carbon residue, (B) a hydrogen-containing gas and (C) a liquid catalyst composition, which has been prepared by mixing (a) water, (b) at least one alkali metal sulfide or hydrogen sulfide or ammonium sulfide or hydrogen sulfide and (c) at least one molybdenum-oxygen compound, wherein the atomic ratio of S:Mo in this liquid catalyst composition is in the range of from about 0.6:1 to about 3.0:1, preferably from about 0.8:1 to 2.3:1. Preferably, (b) is (NH.sub.4).sub.2 S and (c) is MoO.sub.3.
Abstract:
At least one decomposable molybdenum dithiocarbamate compound is mixed with a hydrocarbon-containing feed stream. The hydrocarbon-containing feed stream containing such decomposable molybdenum dithiocarbamate compound is then contacted in a hydrofining process with a catalyst composition comprising a support selected from the group consisting of alumina, silica and silica-alumina and a promoter comprising at least one metal selected from Group VIB, Group VIIB and Group VIII of the Periodic Table. The introduction of the decomposable molybdenum dithiocarbamate compound may be commenced when the catalyst is new, partially deactivated or spent with a beneficial result occurring in each case.
Abstract:
A catalyst composition is prepared by dissolving a suitable vanadium and oxygen containing compound, a suitable nickel (II) compound and ammonia in water, mixing this solution with an alumina containing support material, and calcining this mixture. This catalyst composition is used primarily for hydrotreating of hydrocarbon feed stream, which contain nickel, vanadium and sulfur impurities, particularly heavy oils.
Abstract:
Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.
Abstract:
At least one decomposable compound of a metal selected from the group consisting of copper, zinc and the metals of Group III-B, Group IV-B, Group VB, Group VIB, Group VIIB and Group VIII of the Periodic Table is mixed with a hydrocarbon-containing feed stream. The hydrocarbon-containing feed stream containing such decomposable compound is then contacted with a suitable refractory inorganic material to reduce the concentration of metals, sulfur and Ramsbottom carbon residue contained in the hydrocarbon-containing feed stream. The suitable refractory inorganic material may also be slurried with the hydrocarbon-containing feed stream.
Abstract:
Metals contained in a hydrocarbon containing feed stream are removed by contacting the hydrocarbon containing feed stream under suitable demetallization conditions with hydrogen and a catalyst composition comprising zirconium phosphate, cobalt phosphate and a metal phosphate where the metal is selected from the group consisting of nickel and vanadium. Molybdenum phosphate may also be added to the catalyst composition if desired. The life and activity of the catalyst composition may be increased by introducing a decomposable metal compound selected from the group consisting of the metals of Group V-B, Group VI-B, Group VII-B and Group VIII of the Periodic Table into the hydrocarbon containing feed stream prior to contacting the hydrocarbon containing feed stream with the catalyst composition.
Abstract:
An improved olefin disproportionation catalyst produced by contacting an inorganic refractory oxide containing a catalytic amount of tungsten oxide or molybdenum oxide with a promoting amount of at least one elemental metal selected from zinc and manganese.
Abstract:
Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst produced by combining a metal, such as tungsten or a tungsten compound, with a halosilane by adding either water or silica to the suspension of metal and halosilane and then heating to activate the catalyst.
Abstract:
A catalyst and method of making a catalyst are provided for the selective hydrotreating of a selective hydrotreating feedstock comprising reacting the feedstock with hydrogen at hydrotreating conditions in the presence of a catalyst comprising a hydrogenation component and a support component. The hydrogenation component comprises a Group VIB metal component and a Group VIII metal component wherein the Group VIB metal component is present in an amount ranging from about 4 wt % to about 20 wt % and the Group VIII metal component is present in an amount ranging from about 0.5 wt % to about 10 wt %, both calculated as oxides and based on the total catalyst weight. The support component comprises from about 0.5 wt % to about 50 wt % of a magnesium component and from about 0.02 wt % to about 10 wt % of an alkali metal component, both calculated as oxides and based on the total catalyst weight. The present invention provides a process, catalyst, and method of making a catalyst resulting in higher selective hydrotreating feedstock octane at high levels of desulfurization, among numerous other benefits.