Abstract:
An optical transmission and reception control apparatus is provided. The present invention relates to an optical transmission and reception control apparatus for enabling smooth optical transmission and reception when a photo diode and/or a laser diode fail. The apparatus includes a plurality of laser diodes, a laser driver, a first switching unit, a plurality of photo diodes, an optical power amplifier, a second switching unit, an optical power detection module, and a control module.
Abstract:
A molding method may include forming a pattern on a surface of a substrate, the pattern and the surface of the substrate having an opposite polarity to each other, providing the substrate on which the pattern is formed with a liquid to form a liquid mold on either the surface of the substrate or the pattern, the liquid having a polarity identical to the polarity of the surface of the substrate or the polarity of the pattern and cooling the liquid mold at a temperature below a freezing point of the liquid to form a solid mold.
Abstract:
A display device includes an upper substrate and a lower substrate. Black matrixes are formed upon the upper substrate and color filters are formed between the black matrixes. Microshutter electrodes are formed upon the lower substrate and are configured to open and close. The display device also includes fixed electrodes formed in a vertical direction between the upper substrate and the lower substrate.
Abstract:
The present invention relates to a method for secreting and producing a target protein into cell culture broth. More particularly, the invention relates to a microorganism co-transformed with a recombinant expression vector containing E. coli outer membrane protein F (OmpF) and a recombinant expression vector containing a target protein to be secreted into cell culture broth, as well as a method of secreting and producing the target protein into cell culture broth by culturing the microorganism. According to the invention, the target protein can be secreted into cell culture broth in a pure form without fusion with other proteins so that the efficient isolation and purification of the target protein is possible.
Abstract:
The present invention relates to a method of preparing heavy metal nanoparticles using a heavy metal-binding protein. More specifically, relates to a method for preparing heavy metal structures, comprising the steps of: culturing a microorganism transformed with a gene encoding a heavy metal-binding protein, in a heavy metal ion-containing medium, to produce heavy metal structures in the microorganism; and collecting the produced heavy metal structures, as well as nanoparticles of heavy metal structures prepared according to said method. Unlike prior methods of preparing quantum dots by physically binding metal materials, en the quantum dots disclosed herein can be efficiently produced by expressing the heavy metal-binding protein in cells. In addition, the quantum dots are useful because they can solve an optical stability problem that is the shortcoming of organic fluorophores.
Abstract:
An express interface apparatus using an optical connection is provided. The apparatus connects between a central processing unit (CPU) in a computer system and an external device supporting optical signal transfer using a peripheral component interconnect express (PCIE) supporting high-speed signal processing. The apparatus includes an optical connection module for connecting the external device so that an optical signal is input/output; an optical-to-electrical conversion module for converting the optical signal from the optical connection module into an electrical signal or converting an electrical signal into an optical signal; a signal processing module connected to the optical-to-electrical conversion module for performing signal processing to divide or merge the electrical signal; and a PCIE control module for controlling a processed signal from the signal processing module to deliver the signal to the CPU via a PCIE slot and controlling high-speed data transmitted and received between the CPU and the external device, such that a signal can be transmitted and received without a distortion or bottleneck phenomenon in high-speed data transfer.
Abstract:
A haptic module using a magnetic force and an electronic apparatuses having a magnet arrangement frame arranged so that polarities of adjacent magnets are alternate; shielding screens positioned on uppers of each of frame elements of the magnet arrangement frame and formed in a window arrangement to shield any one polarity of the frame elements; linear movement apparatus fixed to outside portions of the shielding screens to move the shielding screens in a longitudinal direction of the frame element; a magnet frame positioned on an upper of the magnet arrangement frame through the shielding screen and taking on the same polarity on the whole of one surface thereof; and a controller that controls the linear movement apparatus to provide various and dynamic force feedback and tactile sensation to a user, as well as reduce complexity of a constitution as compared to a related art and further accomplish miniaturization.
Abstract:
The disclosure relates to an optical receiver having an apparatus for varying decision threshold level and an optical transmission system having the same. An optical receiver having an apparatus for varying decision threshold level includes a photo diode (PD) for receiving an optical signal and transforming the received optical signal into an electrical signal; a trans-impedance amplifier (TIA) for pre-amplifying the electrical signal transformed by the PD; a limiting amplifier (LA) for deciding the electrical signal amplified by the TIA as either level 0 or level 1 and for amplifying the decision signal; a clock and data recovery (CDR) for generating a clock and data from the amplified decision signal by the LA; and a control circuit for adjusting a decision threshold level depending on the received optical signal power by the PD and for providing the adjusted decision threshold level with the LA.
Abstract:
A personal media system and method that obtain content playback information of an end device is provided. The personal media system including: an end device reader to, when an end device that collects playback information about content playback is connected, obtain the collected playback information and content information about content stored in the end device; and a mapping unit to map the playback information and the content information, to determine playback information for each content in the end device, and to generate playback information for each content of a user based on the playback information for each content in the end device.
Abstract:
The present invention relates to a method for simultaneously surface expressing a target protein using a cofactor and an enzyme regenerating the cofactor on the cell surface. According to the present invention, it is possible to provide a microorganism capable of simultaneously surface expressing a target protein using a cofactor to transform a biochemical material at a high efficiency and an enzyme generating the cofactor without adding an expensive cofactor in a large amount.