摘要:
There is provided a frame body used for a cell of a redox flow battery, that can improve heat dissipation of an electrolyte in a slit and can suppress rise of the temperature of the electrolyte. It is a frame body used for a cell of a redox flow battery, comprising: an opening formed inside the frame body; a manifold allowing an electrolyte to pass therethrough; and a slit which connects the manifold and the opening and forms a channel of the electrolyte between the manifold and the opening, the slit having a pair of sidewalls facing each other in a cross section orthogonal to a direction in which the electrolyte flows, the slit having, at at least a portion thereof in the slit's depthwise direction, a width narrowing portion allowing the sidewalls to have a spacing narrowed in the depthwise direction.
摘要:
A redox flow battery. A metal-ligand coordination compound including an aromatic ligand that contains an electron withdrawing group is used as the catholyte and/or the anolyte so that a redox flow battery having high energy density and excellent charge/discharge efficiency may be provided.
摘要:
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 μm-2,500 μm, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm2 at a C-rate of C/2.
摘要翻译:本文所述的实施方案一般涉及具有高速率能力的电化学电池,更具体地涉及生产具有相对较厚的半固体电极的高容量和高速率电池的装置,系统和方法。 在一些实施例中,电化学电池包括阳极,半固体阴极,其包括活性材料和导电材料在液体电解质中的悬浮液,以及设置在阳极和阴极之间的离子可渗透膜。 半固体阴极的厚度在约250μm-2,500μm的范围内,电化学电池的C / 2速率的面积比容量为至少5mAh / cm 2。
摘要:
The present disclosure relates to aqueous all-copper redox flow batteries. This battery comprises at least one first and second half-cell compartments including the first and second aqueous electrolyte solutions comprising a copper compound and supporting electrolytes and a first and second electrodes. The battery further comprises external storage tanks for the electrolytes residing outside of the half-cell compartments, and means for circulating the electrolytes to and from the half-cells. There is a separator between the first and the second half-cell, and the half-cells of this battery are configured to conduct oxidation and reduction reactions for charging and discharging the battery.
摘要:
The invention concerns flow batteries comprising: a first half-cell comprising: (i) a first aqueous electrolyte comprising a first redox active material; and a first carbon electrode in contact with the first aqueous electrolyte; (ii) a second half-cell comprising: a second aqueous electrolyte comprising a second redox active material; and a second carbon electrode in contact with the second aqueous electrolyte; and (iii) a separator disposed between the first half-cell and the second half-cell; the first half-cell having a half-cell potential equal to or more negative than about −0.3 V with respect to a reversible hydrogen electrode; and the first aqueous electrolyte having a pH in a range of from about 8 to about 13, wherein the flow battery is capable of operating or is operating at a current density at least about 25 mA/cm2.
摘要翻译:本发明涉及流动电池,包括:第一半电池,包括:(i)第一含水电解质,其包含第一氧化还原活性材料; 和与第一含水电解质接触的第一碳电极; (ii)第二半电池,包括:包含第二氧化还原活性材料的第二含水电解质; 和与第二含水电解质接触的第二碳电极; 和(iii)设置在第一半电池和第二半电池之间的隔板; 所述第一半电池相对于可逆氢电极具有等于或大于约-0.3V的半电池电位; 并且所述第一含水电解质的pH在约8至约13的范围内,其中所述流动电池能够以至少约25mA / cm 2的电流密度操作或正在其操作。
摘要:
A stabilized electrolyte for a metal-halogen flow battery and flow battery system including the same. The electrolyte includes an aqueous metal halide, an anionic wetting agent, a bromine complexing agent, and bromine.
摘要:
The present invention relates to an ion exchange membrane and a manufacturing method therefor and, more specifically, to an ion exchange membrane comprising a cross-linked sulfonated triblock copolymer and carbon nanotube, which is utilizable in a redox flow energy storage device, etc. due to high ion conductivity, mechanical strength and ion selectivity. The ion exchange membrane of the present invention has superior ion selectivity and mechanical strength and thus can greatly improve the performance of a fuel battery, etc. when applied thereto.
摘要:
The disclosure relates to a method for temporarily storing the electric energy of an energy supply system. The method comprises the steps: receiving the electric energy via an interface to the energy supply system; carrying out electrolysis in order to convert the electric energy into chemical reaction energy and an oxidant; and storing the chemical reaction energy in a fluid reservoir.
摘要:
The present invention relates to a redox flow secondary battery. The redox flow secondary battery of the present invention comprises a unit cell including a pair of electrodes made of a porous metal, wherein the surface of the porous metal is coated with carbon. According to the present invention, a redox flow secondary battery using porous metal electrodes uniformly coated with carbon is provided, thus improving conductivity of the electrodes, and the electrodes have surfaces uniformly coated with a carbon layer having a wide specific surface area, thus improving reactivity. As a result, capacity of the redox flow secondary battery and energy efficiency can be improved and resistance of a cell can be effectively reduced. Further, the electrodes are uniformly coated with a carbon layer, thus also improving corrosion resistance.
摘要:
A method of direct electrochemical oxidation is provided to modify carbon felts of a flow battery. Redox reactions are used for modification. Therein, voltage is directly conducted to the cell stack. The carbon felts of the cell stack are uniformly contacted with electrolytes for processing electrochemical reactions. As a result, modification is done to generate oxygen-containing functional groups (—COOH, —OH) on surfaces of the carbon felts. Thus, the present invention has the following advantages: Operation and procedure are easy and quick. Experimental parameters and conditions can be easily regulated and replaced without dismantling a device used for modification. The device used can withstand a wide range of voltage and current. Modification effect can be obtained with low cost yet without high-temperature treatments.