摘要:
In a computer-implemented method for signing a message by a user device of a public key infrastructure (PKI) system, the message and a user public key are sent to at least one attestation server and a server signature on the message is received from the attestation server. The server signature attests the validity of the user public key and is bound to the user public key and the message. The message and the server signature are signed with a user private key, thereby providing a user signature on the message. An attestation server and a related computer program product are also provided.
摘要:
A method and system configured to produce a cryptographic signature on a message, under a key, at a user computer wherein the key is shared between the user computer, which stores a first key-share, and an authentication computer, which stores a second key-share and a first authentication value. The user computer encodes the message to produce a blinded message, produces the first authentication value from a user password and a secret value, and produces a second authentication value by encoding the first authentication value and a nonce. The authentication computer uses the nonce to determine if the first authentication value is correct and, if so, encodes the blinded message using the second key-share to produce a partial signature. The user computer produces a signature on the message under the key by encoding the partial signature and the message using the first key-share and an unblinding function.
摘要:
A method and system configured to produce a cryptographic signature on a message, under a key, at a user computer wherein the key is shared between the user computer, which stores a first key-share, and an authentication computer, which stores a second key-share and a first authentication value. The user computer encodes the message to produce a blinded message, produces the first authentication value from a user password and a secret value, and produces a second authentication value by encoding the first authentication value and a nonce. The authentication computer uses the nonce to determine if the first authentication value is correct and, if so, encodes the blinded message using the second key-share to produce a partial signature. The user computer produces a signature on the message under the key by encoding the partial signature and the message using the first key-share and an unblinding function.
摘要:
A method and system configured to produce a cryptographic signature on a message, under a key, at a user computer wherein the key is shared between the user computer, which stores a first key-share, and an authentication computer, which stores a second key-share and a first authentication value. The user computer encodes the message to produce a blinded message, produces the first authentication value from a user password and a secret value, and produces a second authentication value by encoding the first authentication value and a nonce. The authentication computer uses the nonce to determine if the first authentication value is correct and, if so, encodes the blinded message using the second key-share to produce a partial signature. The user computer produces a signature on the message under the key by encoding the partial signature and the message using the first key-share and an unblinding function.
摘要:
Various embodiments are directed to a system for accessing a self-encrypting drive (SED) based on a blind challenge authentication response mechanism (BCRAM). An SED may be authenticated within a system, for example, upon resuming from a sleep state, based on a challenge generated within the SED, signed using a private key by a trusted execution environment (TEE) and authenticated using a corresponding public key within the SED.
摘要:
Effecting reissue in a data processing system of a cryptographic credential certifying a set of attributes, the credential being initially bound to a first secret key stored in a first processing device. A backup token is produced using the first device and comprises a commitment to said set of attributes and first proof data permitting verification that the set of attributes in said commitment corresponds to the set of attributes certified by said credential. At a second processing device, a second secret key is stored and blinded to produce a blinded key. A credential template token produced from the backup token and the blinded key is sent to a credential issuer where said verification is performed using the first proof data and the credential template token is used to provide a reissued credential, certifying said set of attributes, to the second device, the reissued credential being bound to the second secret key.
摘要:
A method and system for maintaining privacy for transactions performable by a user device having a security module with a privacy certification authority and a verifier are disclosed. The system includes an issuer providing an issuer public key; a user device having a security module for generating a first set of attestation-signature values; a privacy certification authority computer for providing an authority public key and issuing second attestation values; and a verification computer for checking the validity of the first set of attestation signature values with the issuer public key and the validity of a second set of attestation-signature values with the authority public key, the second set of attestation-signature values being derivable by the user device from the second attestation values, where it is verifiable that the two sets of attestation-signature values relate to the user device.
摘要:
A method and system for maintaining privacy for transactions performable by a user device having a security module with a privacy certification authority and a verifier are disclosed. The system includes an issuer providing an issuer public key; a user device having a security module for generating a first set of attestation-signature values; a privacy certification authority computer for providing an authority public key and issuing second attestation values; and a verification computer for checking the validity of the first set of attestation signature values with the issuer public key and the validity of a second set of attestation-signature values with the authority public key, the second set of attestation-signature values being derivable by the user device from the second attestation values, where it is verifiable that the two sets of attestation-signature values relate to the user device.
摘要:
Virtual account based digital cash protocols use a combination of blind digital signatures and pseudonym authentication with at least two pairs of public and private keys. A user is provided with one master pair of private and public keys and as many pseudonym pairs of private and public keys as desired. The resulting virtual account based hybrid protocols combine the advantages of blind digital signature and pseudonym authentication. Blind digital signatures based on the master pair of keys are used to withdraw digital cash from the user's bank account under the user's real identity. A pseudonym pair of keys is used for converting digital cash into virtual account based digital cash by a digital cash issuer. All pseudonyms can be used for spending the virtual account based digital cash. These protocols ensure anonymity when withdrawing digital cash from the user's account under the user's real identity in addition to providing pseudonym authentication when spending virtual cash based digital cash under a pseudonym.
摘要:
Digital cash token protocols use a combination of blind digital signatures and pseudonym authentication with at least two pairs of public and private keys. A user is provided with one master pair of private and public keys and as many pseudonym pairs of private and public keys as desired. The resulting digital cash token based hybrid protocols combine the advantages of blind digital signature and pseudonym authentication. Blind digital signatures based on the master pair of keys are used to withdraw digital cash from the user's bank account under the user's real identity. A pseudonym pair of keys is used for converting digital cash into digital cash tokens by a digital cash issuer. All pseudonyms can be used for spending the digital cash tokens. These protocols ensure anonymity when withdrawing digital cash from the user's account under the user's real identity in addition to providing pseudonym authentication when spending digital cash tokens under a pseudonym.