Abstract:
A method for operating a gas turbine (11) having a compressor (12), a turbine (14) and a combustor (13) with a pilot burner group (15a), a rich premix burner group (15b) and a lean premix burner group (15c), under changing composition of the incoming fuel gas (16), includes the steps of: continuously measuring, in real time, the composition of the fuel gas (16); and controlling the operation of the gas turbine (11) and the combustion of the burners (15a-c) by using the real time fuel gas composition measurements.
Abstract:
An auto-tune controller and tuning process implemented thereby for measuring and tuning the combustion dynamics and emissions of a GT engine, relative to predetermined upper limits, are provided. Initially, the tuning process includes monitoring the combustion dynamics of a plurality of combustors and emissions for a plurality of conditions. Upon determination that one or more of the conditions exceeds a predetermined upper limit, a fuel flow split to a fuel circuit on all of the combustors on the engine is adjusted by a predetermined amount. The control system continues to monitor the combustion dynamics and to recursively adjust the fuel flow split by the predetermined amount until the combustion dynamics and/or emissions are operating within a prescribed range of the GT engine. Additionally, a method of automated extended turndown of a GT engine to find a minimum load is provided.
Abstract:
A method of operating a control unit for controlling at least two different input fuel flows to a combustion device, e.g. a gas turbine includes the step of determining on the basis of at least one operating parameter whether the combustion device is in a predefined operating stage. In response hereto, generating a control signal configured for setting a ratio of at least two different input fuel flows to a predetermined value (psc1, psc3) for a predetermined time (dt) in case the combustion device is in the predefined operating stage.
Abstract:
A gas turbine engine system including a first combustor having a first fuel nozzle and a second combustor having a second fuel nozzle. The system further includes a first acoustic adjuster having a first drive coupled to a first piston with a first fuel orifice. The first piston is disposed along a first fuel passage leading to the first fuel nozzle of the first combustor. The system further includes a second acoustic adjuster having a second drive coupled to a second piston with a second fuel orifice. The second piston is disposed along a second fuel passage leading to the second fuel nozzle of the second combustor.
Abstract:
A method for operating a burner assembly, in particular a burner assembly of a gas turbine, wherein an evaluation variable representing the combustion stability is determined and at least one control variable is altered, at least based on the determined evaluation variable, when the determined evaluation variable does not fall within a previously defined desired range, the desired range of the evaluation variable being constant over the entire output range of the machine, and wherein the evaluation variable is determined based on measured maximum actual amplitudes in previously defined frequency bands and measured actual outputs of the burner assembly.
Abstract:
A system includes a gas turbine engine having a first combustor and a second combustor. The first combustor includes a first fuel conduit having a first plurality of injectors. The first plurality of injectors are disposed in a first configuration within the first combustor along a first fuel path, and the first plurality of injectors are configured to route a fuel to a first combustion chamber. The system further includes a second combustor having a second fuel conduit having a second plurality of injectors. The second plurality of injectors are disposed in a second configuration within the second combustor along a second fuel path, and the second plurality of injectors are configured to route the fuel to a second combustion chamber. The second configuration has at least one difference relative to the first configuration.
Abstract:
A method for operating a gas turbine plant is provided. According to the method a first fuel gas with a first fuel reactivity and a second fuel gas with a second fuel reactivity which is higher than the first fuel reactivity are injected into a combustor of the gas turbine, and the ratio of the mass flows of the second fuel gas to the first fuel gas is controlled depending on the combustion behavior of the combustor. A gas turbine plant configured to carry out the method is further shown.
Abstract:
A fuel supply system includes a main fuel line path configured to route a fuel to a combustion inlet region and a secondary fuel line path fluidly coupled to the main fuel line path. The secondary fuel line path is configured to divert a portion of the fuel from the main fuel line path through a first segment of the secondary fuel line path and return the fuel to the main fuel line path through a second segment of the secondary fuel line path. An obstruction mechanism is located proximate the main fuel line path at an obstruction location and is configured to cyclically translate into the main fuel line path to cyclically alter a cross-sectional area of the main fuel line path to effectively oscillate fuel flow pressure into a combustion system.
Abstract:
A method of influencing combustion dynamics, including measuring a combustion dynamics parameter, and controlling a diluent flow (26) delivered to a fuel flow (32) upstream of a pilot burner fuel outlet (40) in response to the measured combustion dynamics parameter.
Abstract:
A combustion dynamics control system for an aviation based or land based gas turbine engine employs an acoustic driver that is configured to drive pressure perturbations across a premixed fuel injection orifice to substantially zero in response to a control signal such that fuel flow perturbations across the fuel injection orifice are substantially zero.