摘要:
A safe locking mechanism has an engagement element movable from a disengaged position to an engageable position in response to a small amount of electrical power. When in its engageable position a mechanical linkage assembly is driven by the engagement element to unlock a lock-bolt. The mechanical linkage assembly includes a low inertia pivoting cam which interacts with a lock lever of the locking mechanism to move it to an unlocking state. Electrical power is generated solely while the user manually inputs a combination code, and a microprocessor controls storage and delivery of this power to put the engagement element into its engageable position. Once the desired engagement is obtained, the lock-bolt is moved from its locking to its unlocking position manually. Subsequent unlocking requires another entry of the code input.
摘要:
A safe door lock with a servo motor operated cam is described. A retracting lever is pivotally secured to the locking bolt and is displaced on a pivot connection with the bolt by the cam. The position of the cam and the bolt are detected by microswitches. When the retracting lever is in a locking position, the bolt cannot be retracted within the lock housing. The cam is operated by a servo motor and locked in position by the gear train which includes a worm gear. The locking bolt may be a slam bolt having a spring biased latch which slides therewith or the locking bolt may be a deadbolt when the lock is used with a boltwork system of a vault door.
摘要:
A safe locking mechanism has an engagement element movable from a disengaged position to an engageable position in response to a small amount of electrical power. When in its engageable position a mechanical linkage assembly is driven by the engagement element to unlock a lock-bolt. The mechanical linkage assembly includes a low inertia pivoting cam which interacts with a lock lever of the locking mechanism to move it to an unlocking state. Electrical power is generated solely while the user manually inputs a combination code, and a microprocessor controls storage and delivery of this power to put the engagement element into its engageable position. Once the desired engagement is obtained, the lock-bolt is moved from its locking to its unlocking position manually. Subsequent unlocking requires another entry of the code input.
摘要:
A safe locking mechanism has an engagement element movable from a disengaged position to an engageable position in response to a small amount of electrical power. When in its engageable position a mechanical linkage assembly is driven by the engagement element to unlock a lock-bolt. The mechanical linkage assembly includes a low inertia pivoting cam which interacts with a lock lever of the locking mechanism to move it to an unlocking state. Electrical power is generated solely while the user manually inputs a combination code, and a microprocessor controls storage and delivery of this power to put the engagement element into its engageable position. Once the desired engagement is obtained, the lock-bolt is moved from its locking to its unlocking position manually. Subsequent unlocking requires another entry of the code input.
摘要:
A safe locking mechanism has an engagement element movable from a disengaged position to an engageable position in response to a small amount of electrical power. When in its engageable position a mechanical linkage assembly is driven by the engagement element to unlock a lock-bolt. The mechanical linkage assembly includes a low inertia pivoting cam which interacts with a lock lever of the locking mechanism to move it to an unlocking state. Electrical power is generated solely while the user manually inputs a combination code, and a microprocessor controls storage and delivery of this power to put the engagement element into its engageable position. Once the desired engagement is obtained, the lock-bolt is moved from its locking to its unlocking position manually. Subsequent unlocking requires another entry of the code input.
摘要:
A user of a self-powered electronic combination lock rotates an outer dial to cause generators to generate energy for storage in a capacitor bank. The user then rotates an inner dial to cause a microcontroller to sequentially display a combination of numbers, and presses the inner dial to select a displayed number. The microcontroller determines direction and extent of motion of the inner dial by receiving signals derived from Wiegand sensors placed in proximity to a magnetized disc which rotates integrally with the inner dial, and controls the display of numerals on an LCD display accordingly. When the microcontroller determines that a correct combination has been entered, it activates a motor to move a motor cam to act directly on a locking lever so that the locking lever can engage a drive cam integrally linked with the inner dial, to allow the inner dial to withdraw the lock's bolt. Software features, as well as power level monitoring features, cause the locking lever to be moved away from the drive cam to prevent the bolt from being withdrawn if it has not already been withdrawn within a given time window. Integral bearing/retaining members make the lock dials tamper-evident. After a given number of successive incorrect combination entries, an "override" combination, which is preferably a longer, mathematical variation of normal combinations, is necessary to open the lock.
摘要:
A user of a self-powered electronic combination lock rotates an outer dial to cause generators to generate energy for storage in a capacitor bank. The user then rotates an inner dial to cause a microcontroller to sequentially display a combination of numbers, and presses the inner dial to select a displayed number. The microcontroller determines direction and extent of motion of the inner dial by receiving signals derived from Wiegand sensors placed in proximity to a magnetized disc which rotates integrally with the inner dial, and controls the display of numerals on an LCD display accordingly. When the microcontroller determines that a correct combination has been entered, it activates a motor to move a motor cam to act directly on a locking lever so that the locking lever can engage a drive cam integrally linked with the inner dial, to allow the inner dial to withdraw the lock's bolt. Software features, as well as power level monitoring features, cause the locking lever to be moved away from the drive cam to prevent the bolt from being withdrawn if it has not already been withdrawn within a given time window. Integral bearing/retaining members make the lock dials tamper-evident. After a given number of successive incorrect combination entries, an "override" combination, which is preferably a longer, mathematical variation of normal combinations, is necessary to open the lock.
摘要:
An electronic combination lock is disclosed which allows access to a closed or secure location wherein the lock includes a locking mechanism for operating between a locked condition and an unlocked condition. A rotatable cam wheel has a circumferential surface portion defining a slot such that rotation of the cam wheel moves the slot. A movable lever is coupled to the locking mechanism for changing the condition of the locking mechanism from the locked condition to the unlocked condition and is pivotably movable into and out of engagement with the cam wheel. The movable lever engages the cam wheel such that rotation of the cam wheel changes the condition of the locking mechanism. A cantilever and detent on the lever releasably maintain the lever in a position disengaged from the cam wheel. A solenoid and projectable detent moves the lever from its disengaged position for engaging the lever with the cam wheel so that rotation of the cam wheel changes the locking mechanism from the locked condition to the unlocked condition.