Abstract:
An exemplary prism sheet includes a transparent main body. The transparent main body has a surface. A plurality of first elongated micro-protrusions and second elongated micro-protrusions protrude from the surface of the main body. Each of the first elongated micro-protrusions extends along a first direction. Widths and heights of each of the first elongated micro-protrusions vary along the first direction. Each of the second elongated micro-protrusions extends along a second direction that intersects with the first direction. Widths and heights of each of the second elongated micro-protrusions vary along the second direction. A method for making the prism sheet and a liquid crystal display device using the prism sheet are also provided.
Abstract:
An exemplary optical plate includes a plurality of transparent plate units. The transparent plate unit includes a first surface, a second surface, a plurality of conical frustum protrusions, a diffusion layer and a lamp-receiving portion. The second surface is opposite to the first surface. The conical frustum protrusions are formed at the first surface. Each conical frustum protrusion comprises two conical frustums. The diffusion layer is formed at the second surface. The lamp-receiving portion is defined in one of the first surface and the second surface. A backlight module using the optical plate is also provided.
Abstract:
An exemplary optical plate includes at least one transparent plate section. The transparent plate section includes a light output surface, a bottom surface, a plurality of spherical protrusions, a plurality of microstructures, and a lamp-receiving portion. The light output surface is opposite to the bottom surface. The spherical protrusions are formed on the light output surface. The microstructures are formed on the bottom surface. The lamp-receiving portion is defined in the bottom surface. A backlight module using the present optical plate is also provided.
Abstract:
A frame includes a main frame and a receiving frame. The main frame includes a base and several circumferential sidewalls extending from the base. At least two opposite stepped elements are defined at the top of two opposite sidewalls. Each stepped element includes a tread portion extending from the sidewall toward an inner of the main frame, a riser portion extending from the end of the tread portion toward the opening. The receiving frame includes a frame body, a rim portion extending from a bottom of the frame body toward an inner of the frame body, and at least two grooves defined in the rim portion corresponding to the two stepped elements. Each groove of the receiving frame may be inserted into the corresponding stepped element. A backlight system using the frame is also provided, which has a narrow-framed, space-saving design, and also can be assembled easily.
Abstract:
An exemplary optical plate includes at least one transparent plate unit. The transparent plate unit includes a first surface, a second surface, a plurality of conical frustum protrusions, a plurality of spherical protrusions and a lamp-receiving portion. The second surface is opposite to the first surface. The conical frustum protrusions are formed at the first surface. The spherical protrusions are formed at the second surface. The lamp-receiving portion is defined in at least one of the first surface and the second surface. A backlight module using the present optical plate is also provided.
Abstract:
An exemplary LED lamp includes a housing having an opening, a printed circuit board, at least one LED, a light reflective element, at least one light-shielding sheet and a lamp cover. The printed circuit board is positioned on a bottom of the housing. The LED is electrically connected with the printed circuit board. The light reflective element defines at least one through hole, the LED passing through the corresponding through hole. The at least one light-shielding sheet corresponds to the at least one LED respectively. Each light-shielding sheet comprises a bottom reflective plate and a pair of opposite sidewalls extending from two opposite ends of the bottom reflective plate. A plurality of light holes is defined at ends of the bottom reflective plate adjacent to the two opposite sidewalls. The lamp cover is fixed on the opening of the housing. The LED lamp assembly has a uniform luminance.
Abstract:
An optical plate includes a first surface and a second surface opposite the first surface. The first surface defines a plurality of substantially parallel elongated arc-shaped grooves therein. A plurality of substantially parallel elongated V-shaped ridges is formed on the second surface. An extending direction of the elongated arc-shaped grooves is substantially parallel to an extending direction of the elongated V-shaped ridges.
Abstract:
An exemplary optical plate (20) includes a transparent plate (21) and a light diffusion layer (22). The transparent plate includes a light output surface (212), a light input surface (211) opposite to the light output surface, and a plurality of spot-shaped recessed portions (213) formed on the light input surface. The light diffusion layer is coated on the spot-shaped recessed portions. A backlight module using the optical plate is also provided, a plurality of point light sources of which being positioned in one-to-one correspondence with the spot-shaped recessed portions. The backlight module using the optical plate can have a thin body with a good optical performance.
Abstract:
A light source module includes at least a light source and a housing. The housing includes a base having a slanted reflective surface, a plurality of sidewalls extending out of a peripheral of the base cooperatively defining an opening with the base, the sidewall aligned with a trough of the slanted reflective surface having an inner surface and an outer surface opposite to the inner surface, and a plurality of fin structures formed on the outer surface of the sidewall. The light source is fixed on the inner surface of the sidewall. Light rays emitted from the light source being reflected at the slanted reflective surface toward the opening. A backlight system using the light source module is also provided. The present backlight system has a good heat dissipation capability due to an employment of the present light source module, and can be configured to be a thin body.
Abstract:
An exemplary optical plate includes at least one transparent plate unit. The transparent plate unit includes a light output surface, a bottom surface, a plurality of enclosing V-shaped protrusions, a plurality of microstructures and at least one lamp-receiving portion. The light output surface is opposite to the bottom surface. The enclosing V-shaped protrusions are formed on the bottom surface. The microstructures are formed on the light output surface. The lamp-receiving portion is defined in the bottom surface. A backlight module using the present optical plate is also provided.