Abstract:
The present invention relates to a communication system and method for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system. The present invention provides a system and method by which a user equipment (UE) transmits, to an access and mobility management function (AMF), a first message including information related to a network slice in a first authentication, and receives, from the AMF, a third message including a result of a second authentication, wherein whether to require the second authentication is determined by the AMF based on the information and subscription information, and wherein the second authentication between the UE and a server is triggered based on the determination.
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure relates to a method for supporting a session continuity for a terminal in a 5G cellular wireless communication system.
Abstract:
A method and an apparatus for processing a handover of a terminal in a mobile communication system are provided. The method includes determining, by a source evolved-NodeB (eNB), a handover of a User Equipment (UE) to a target eNB, obtaining information about content transmitted to the UE from a source cache server connected to the source eNB over a backhaul network, and transmitting the content information to a target eNB.
Abstract:
The present disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate. A method performed by a session management function (SMF) entity in a wireless communication system, according to various embodiments of the present disclosure, comprises the steps of: receiving a first message comprising a user plane latency (UPL) requirement from a policy control function (PCF) entity; and determining whether to perform PDU session anchor (PSA) user plane function (UPF) relocation, on the basis of the first message.
Abstract:
The disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate. A method performed by an access and mobility management function (AMF) entity in a wireless communication system is provided. The method comprises receiving, from a user equipment (UE), a registration request for fifth generation system (5GS), wherein the registration request includes information on a UE policy container and an indicator that the UE is moving from an evolved packet system (EPS), transmitting, to a first policy control function (PCF) entity for the UE, a first request message for first access and management (AM) policy association based on the registration request, wherein the first request message includes the indicator and receiving, from the first PCF entity, a message including an identifier (ID) of a second PCF entity for the EPS based on the first request message.
Abstract:
The disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate. A method performed by a UE in a wireless communication system includes receiving, from at least one electronic device, a first message requesting a connection to a PIN, identifying to generate a QoS flow for the at least one electronic device, based on the first message, transmitting, to an SMF entity, via an AMF entity, a second message requesting a PDU session modification corresponding to the PIN, receiving, from a BS, a PDU session modification command message including a QoS rule, and applying the QoS rule to the at least one electronic device.
Abstract:
The disclosure provides a method of registering a user equipment (UE) at a second network via a first network, the method including: receiving, from the UE, a registration request message including at least one of first network identification (ID) information, ID information of the UE in the first network, second network ID information, and ID information of the UE in the second network; selecting an authentication server function (AUSF) of the first network which is configured to perform a first authentication procedure of service subscription authentication for the UE in the first network; performing the first authentication procedure with the AUSF of the first network and unified data management (UDM) of the first network; determining, based on a result of the first authentication procedure, whether to perform a second authentication procedure of service subscription authentication for the UE in the second network; performing, based on a result of the determining, the second authentication procedure with an AUSF of the second network and UDM of the second network; and transmitting, to the UE, a registration acceptance message including information of at least one of the result of the first authentication procedure and a result of the second authentication procedure.