Abstract:
Disclosed herein are an X-ray imaging apparatus for providing information about accurate breast density, and a control method of the X-ray imaging apparatus. The X-ray imaging apparatus includes a reconstructing unit configured to reconstruct volumes relating to an object from an X-ray image of the object, a first reference image of the object generated based on the object being of only adipose tissue, and a second reference image of the object generated based on the object being of only fibroglandular tissue, and a density calculator configured to calculate a density of the object that is a ratio of fibroglandular tissue of the object with respect to entire tissue of the object using the reconstructed volumes of the object.
Abstract:
An X-ray imaging apparatus is provided. The X-ray imaging apparatus includes an X-ray source configured for irradiating X-rays to a subject; a filtering unit configured for controlling a dose of X-rays irradiated to the subject; and a processor configured for distinguishing and setting up an uninterested region in an X-ray image obtained based in the irradiated X-rays, and for controlling the filtering unit to set a dose of X-rays irradiated into the uninterested region.
Abstract:
An X-ray imaging apparatus automatically distinguishes between right and left breasts during mammography. The X-ray imaging apparatus includes: an X-ray assembly configured to press a breast, irradiate X-rays onto the pressed breast, and detect X-rays transmitted through the breast; two handles respectively provided in both sides of the X-ray assembly so that a patient is able to grip the handles, each handle including a sensor for detecting the patient's grip; and a controller configured to determine a position of a handle including the sensor that has detected the patient's grip, and to determine that a breast subject to mammography is a breast corresponding to the determined position.
Abstract:
Provided is an apparatus for spectrum estimation. The apparatus includes a threshold setter which sets at least one threshold in order to separate a spectrum into at least one energy bin; a reference value setter which sets one of the at least one threshold as a reference threshold; a threshold adjuster which adjusts the at least one threshold based on a predetermined condition; a comparer which compares the reference threshold with the adjusted threshold; and an output unit which outputs a spectrum in which the adjusted threshold is set, when a value which is determined based on the comparison result corresponds to a predetermined maximum value.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate and emit X-rays, an X-ray detector configured to detect the X-rays and count a number of photons having energy equal to or greater than threshold energy per pixel among photons contained in the detected X-rays, a map generator configured to extract corrected threshold energy corresponding to target threshold energy mapped to each pixel, and a data correction unit configured to calculate corrected X-ray data corresponding to the corrected threshold energy per pixel from a plurality of X-ray data acquired based on a plurality of images of a target object obtained by using a plurality of approximate energies equal or approximate to the target threshold energy as threshold energy of the X-ray detector.
Abstract:
Provided are a calibration apparatus and method that may be used for setting a magnitude of an electric pulse based on a result obtained by imaging at least one imaging object, and that may be used for calibrating by mapping at least one photon energy corresponding to an absorption edge of at least one calibration object.
Abstract:
An X-ray imaging apparatus includes an X-ray emitter that emits X-rays to an object at a plurality of positions; a detector that detects X-rays having passed through the object and converts the detected X-rays into electric signals; and an image processor that is configured to generate X-ray images at the plurality of positions by reading out the electric signals, acquire volume data of the object using the X-ray images, and reproject the acquired volume data by using different bands of energy spectrums to acquire reconstructed reprojection images of different energy bands.
Abstract:
Disclosed herein is an X-ray imaging apparatus. The X-ray imaging apparatus includes at least one X-ray emitter which is configured to irradiate an object with X-rays at a plurality of X-ray emission positions, an X-ray detector which is configured to detect X-rays which are emitted by the X-ray emitter and to convert the detected X-rays into an electric signal, and an image processor which is configured to acquire a plurality of original X-ray images which respectively correspond to the X-ray emission positions from the generated electric signal and to estimate a virtual X-ray image which is acquirable at an X-ray emission position located between at least two of the plurality of X-ray emission positions, based on at least two of the original X-ray images.
Abstract:
Provided is a medical imaging apparatus including: a scanner configured to obtain projection data of an object; a three-dimensional restoring module configured to restore a volume of the object based on the projection data; a volume segmentation module configured to segment a plurality of material volumes corresponding to a plurality of materials included in the object based on the volume of the object; a reprojection module configured to generate a plurality of reprojection images according to the plurality of materials by reprojecting the plurality of material volumes from a plurality of virtual viewpoints; and an image fusion module configured to generate a plurality of fusion images according to the plurality of virtual viewpoints, each of the plurality of fusion images being generated by fusing reprojection images according to plurality of materials obtained from the same virtual viewpoint.
Abstract:
Provided is a method and apparatus for providing a three-dimensional (3D) image. A plurality of first projection images may be created by detecting X-rays which are emitted toward an object at different angles. A plurality of second projection images with respect to a partial volume of the object may be created by applying a forward projection and interpolation to at least one of the plurality of first projection images. A left image and a right image may be selected from among the plurality of second projection images, and the selected left image and right image may be displayed for a user as a 3D projection image.