Abstract:
A method for manufacturing an OLED display according to an exemplary embodiment comprises: forming a thermosetting adhesive layer having a getter receiving portion on a metal sheet; forming a display unit including a plurality of pixels on a substrate; forming a getter layer at an external side of the display unit on the substrate; adhering the thermosetting adhesive layer and the metal sheet to the substrate so as to locate the getter layer in the getter receiving unit; and hardening the thermosetting adhesive layer. The forming of the thermosetting adhesive layer includes layering a solid thermosetting adhesive sheet which has been patterned so as to have the getter receiving portion on the metal sheet.
Abstract:
The present invention relates to an organic light emitting device and a manufacturing method thereof. A manufacturing method of an organic light emitting device according to an exemplary embodiment of the present invention includes forming a thin film structure on a first substrate, forming a dehumidification buffer layer on a second substrate, combining the first substrate and the second substrate, and heat treating the dehumidification buffer layer to soften the dehumidification buffer layer.
Abstract:
A display panel includes a first display substrate, a second display substrate. The second display substrate includes a substrate, a color conversion layer including a first conversion part configured to absorb light of a first color and to emit light of a second color, a second conversion part configured to absorb the light of the first color and to emit light of a third color, and a third conversion part configured to transmit the light of the first color, and a filter layer including a first filter overlapping with the first conversion part and having the second color, a second filter overlapping with the second conversion part and having the third color, a third filter overlapping with the third conversion part and having the first color, and an auxiliary filter overlapping with the second conversion part and configured to absorb the light of the first color.
Abstract:
A display device comprises a substrate, a via layer disposed on the substrate, a first electrode and a second electrode disposed on the via layer and spaced apart from each other, a third electrode that overlaps a region between the first electrode and the second electrode in a thickness direction, and light-emitting elements disposed on the first electrode and the second electrode, wherein the third electrode overlaps portions of the first electrode and the second electrode in the thickness direction.
Abstract:
A display panel includes a first display substrate, a second display substrate. The second display substrate includes a substrate, a color conversion layer including a first conversion part configured to absorb light of a first color and to emit light of a second color, a second conversion part configured to absorb the light of the first color and to emit light of a third color, and a third conversion part configured to transmit the light of the first color, and a filter layer including a first filter overlapping with the first conversion part and having the second color, a second filter overlapping with the second conversion part and having the third color, a third filter overlapping with the third conversion part and having the first color, and an auxiliary filter overlapping with the second conversion part and configured to absorb the light of the first color.
Abstract:
A liquid crystal display device includes a first substrate, a pixel electrode which is disposed on the first substrate and comprises a first sub-pixel electrode and a second sub-pixel electrode adjacent to the first sub-pixel electrode along a first direction, and a shielding electrode which is disposed on the same layer as the pixel electrode and comprises a first area having a first width and a second area having a second width which is smaller than the first width along a second direction which crosses the first direction, and the first sub-pixel electrode may be adjacent to the first area along the second direction, and the second sub-pixel electrode may be adjacent to the second area along the second direction.
Abstract:
A color conversion substrate for displaying a first color, a second color, and a third color may include a base substrate, a first light-blocker, a second light-blocker, a pattern layer, a first color converter, and a second color converter. The first light-blocker contacts a surface of the base substrate and may block first light of the third color. The second light-blocker contacts the surface of the base substrate and may block second light of the third color. The pattern layer is disposed on the first light-blocker and the second light-blocker and includes an optical pattern that includes protrusions. The first color converter overlaps the first light-blocker and may convert a first portion of incident light into light of the first color. The second color converter overlaps the second light-blocker and may convert a second portion of the incident light into light of the second color.
Abstract:
A color conversion panel includes a substrate that includes first to third pixel areas, a first color conversion layer on the substrate in the first pixel area that converts incident light into first color light, a second color conversion layer on the substrate in the second pixel area that converts the incident light into second color light, a first color filter layer between the substrate and the first color conversion layer that has the first color and blocks incident light not converted by the first color conversion layer, a second color filter layer between the substrate and the second color conversion layer that has a third color and blocks incident light not converted by the second color conversion layer, and a light shielding layer on the substrate between the second and the third pixel areas that has the first color.