Abstract:
The present invention provides a technique for an access point (AP) to maintain a basic service set (BSS) on two or more channels simultaneously by temporarily blocking one BSS and servicing the other BSS while the other BSS is blocked, thereby providing an efficient way to create a dual cell AP with only a single radio. In an embodiment of the invention, a method for servicing a first set of wireless stations operating on a first channel of an access point and a second set of wireless stations operating on a second channel of the access point comprises transmitting, at a first time, a first frame from the access point to the first set of wireless stations via the first channel, the first frame having duration data directing the first set of wireless stations to cease transmitting until a second time represented by the duration data and servicing the second set of wireless stations via the second channel of the access point for at least a part of a time period between the first time and the second time. The method further comprises transmitting, at the second time, a second frame from the access point to the second set of wireless stations via the second channel, the second frame having duration data directing the second set of wireless stations to cease transmitting until a third time represented by the duration data of the second frame and servicing the first set of wireless stations via the first channel of the access point for at least a part of a time period between the second time and the third time. The method also may comprise transmitting a Delivery Transmission Indication Map (DTIM) frame prior to transmitting each of the first and second frames. The transmission of the DTIM frame preferably occurs substantially simultaneously with a Target Beacon Transmission Time (TBTT) of the access point.
Abstract:
Disclosed herein are exemplary techniques for managing power in a direct wireless link between two wireless devices. The present invention provides at least three direct link power management techniques: Fast Resumption Mode (FRM) wherein the direct link is resumed automatically at a specified timing synchronization function (TSF); Slow Resumption Mode (SRM) wherein the direct link may be resumed by sending a Resume-Request via the access point; and Reverse Polling (RP), wherein one peer station of the direct link is continually awake and the other peer station uses reverse polling to start a service period. Thus, a method for power management of a direct wireless link between two wireless devices is disclosed. The method comprising the steps of establishing a direct wireless link between the first wireless device and the second wireless device; transmitting, from a first wireless device, a frame having a time value; receiving, at the second wireless device, the frame from the first wireless device; suspending the direct wireless link a duration determined based on the time value; and resuming the direct wireless link at a time determined based on the time value.
Abstract:
Disclosed herein are exemplary techniques for the communication of information in a wireless system by using multiple wireless channels. A direct link between two or more wireless devices may be established by performing a direct link setup between two or more wireless devices using an access point, where the direct link setup is conducted over a base channel and the direct link is established on a parallel channel. The two or more wireless devices may switch to the parallel channel and use the established direct link to communicate information directly without the access point as an intermediary. In anticipation of a predetermined event, such as the transmission of a delivery traffic indication map (DTIM) beacon frame by the access point, the two or more wireless devices may switch back to the base channel so that uplink, downlink and/or peer-to-peer information may be transmitted and/or received.
Abstract:
Disclosed herein are techniques for power management in wireless networks. Based upon receipt of an indication of the link margin of a receiving wireless device, a transmitting wireless device may adjust its transmit power commensurate with the link margin. The indication of the link margin may be transmitted from the receiving wireless device to the transmitting wireless device periodically. Alternatively, the receiving wireless station may provide the indication of the link margin in response to information received from the transmitting wireless device. In this instance, the indication of the link margin may be included in a piggyback acknowledgement (ACK) frame conventionally used to acknowledge receipt of the information transmitted by the transmitting wireless station.