Abstract:
A method of transmitting control information in a wireless communication system is disclosed. A method of receiving control information in a mobile station which receives downlink data from a plurality of cells simultaneously in a wireless communication system comprises receiving downlink control information including the control information on data transmitted from the plurality of cells from a serving base station via a downlink control channel.
Abstract:
A method and terminal apparatus are described for allocating resources for transmitting a signal in a multiple-input multiple-output (MIMO) wireless communication system. An uplink signal is transmitted using L layers at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. Modulation symbols are generated by modulating output bit sequences of an interleaver matrix by a unit of log2 Q bits. Q is a modulation order, and each of the output bit sequences has a size of L·log2 Q bits. The modulation symbols are mapped to the L layers and transmitted by using the L layers. The output bit sequences are generated by reading out entries of the interleaver matrix, column by column.
Abstract:
A method for transmitting a sounding reference signal in a MIMO wireless communication system and an apparatus therefor are disclosed. The method for transmitting sounding reference signals (SRSs) in a MIMO wireless communication system comprises receiving sounding reference signal parameters from a base station; receiving information of the number of sounding reference signals which will be transmitted at a transmission time instant from the base station; if a plurality of sounding reference signals are provided, generating the sounding reference signals corresponding to each of the plurality of antennas by using the sounding reference signal parameters; and transmitting the generated sounding reference signals to the base station through their corresponding antennas at a specific transmission instant.
Abstract:
A Multi-User-Multiple Input Multiple Output (MU-MIMO) transmission method performed by an Access Point (AP) in a Wireless Local Area Network (WLAN) system is provided. The method includes transmitting an MU-MIMO initiation message to a destination Station (STA) which is a target of a MU-MIMO transmission, the MU-MIMO initiation message informing that MU-MIMO transmission will be initiated, receiving a sounding frame transmitted by the destination STA as a response to the MU-MIMO initiation message and performing MU-MIMO transmission on data by beamforming based on channel information obtained from the sounding frame. The sounding frame includes precoded and virtualized channel information between the AP and the STA. A dimension of the virtualized channel information is lower than a dimension of channel information between the AP and the STA.
Abstract:
A link adaptation method performed by a station (STA) in a wireless local area network (LAN) system supporting multi-user multiple-input multiple-output (MU-MIMO) is provided. The method includes: receiving a modulation and coding scheme (MCS) request, a steered sounding physical layer convergence procedure (PLOP) protocol data unit (PPDU) which is beam-formed to the STA, and a MIMO indicator including MU-MIMO-related information from an access point (AP); and transmitting feedback information including an MCS acquired from the steered sounding PPDU and the MU-MIMO-related information to the AP in response to the MCS request.
Abstract:
A method for transmitting channel quality information based on a differential scheme is disclosed. When channel quality information of a predetermined number of sub-bands selected by a receiver in a frequency selective channel is transmitted, total average channel information is transmitted. Channel information of the selected sub-bands is transmitted as sub-band differential information associated with average channel information. In this case, the sub-band differential information may be denoted by a specific value contained in a differential-value range including only positive (+) values. If at least two channel quality information is transmitted by a MIMO system, channel quality information of one channel is transmitted, then channel quality information of the other channel is transmitted as spatial differential information. In this case, the spatial differential information is denoted by a specific value contained in a differential-value range asymmetrical on the basis of “0”.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
Abstract:
In a system having a plurality of cells participating in a Coordinated Multi-Point (CoMP) operation, a method for transmitting Reference Signals (RSs) to User Equipment (UE) includes generating, by Base Station (BS) included in each of the plurality of cells, a subframe including RSs for a UE located in the each of the plurality of cells, and transmitting the generated subframe to the UE by the BS. The RSs include RSs for channel measurement, and RSs for data demodulation, the plurality of cells are grouped according to frequency shift values applied to the RSs for channel measurement and RS allocation patterns are determined for two cells among the plurality of cells according to a predetermined rule.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.