Abstract:
Disclosed are a terminal device for receiving a signal in a wireless communication system for supporting a plurality of component carriers and a method thereof. In the terminal device for receiving the signal in the system for supporting the component carriers, a receiver receives a Physical Downlink Control Channel (PDCCH) including control information of a first type component carrier from a base station or a relay. A processor performs a decoding operation or controls an operation in a slip mode on the basis of control information included in a PDCCH in a second type component carrier after a time corresponding to a particular time offset value passes from a transmission time point of the PDCCH.
Abstract:
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method for transmitting control information through a PUCCH in a wireless communication system and an apparatus thereof, comprising the steps of: spreading modulation symbol sets to first slot, by using a first code; spreading modulation symbol sets to second slot, by using a second code, wherein the length of the second code is varied according to the number of SC-FDMA symbols for PUCCH transmission.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method for receiving an aperiodic sounding reference signal (SRS) from a user equipment (UE) at a base station in a time division duplex (TDD) communication system. The method according to one embodiment includes transmitting downlink control information (DCI) including a request of the aperiodic SRS to the UE. The downlink control information includes information for receiving downlink data using multiple antennas from the base station by the user equipment. The method according to the embodiment further includes receiving the aperiodic SRS from the UE in response to the request.
Abstract:
The present invention provides a method and apparatus for transmitting uplink control information (UCI) by user equipment in a wireless communication. The user equipment performs channel coding on information bits of the UCI to generate encoding information bits; performs modulation on the thus generated encoding information bits to generate complex modulation symbols; spreads the complex modulation symbols block-wise to a plurality of single carrier-frequency division multiple access (SC-FDMA) symbols based on an orthogonal sequence; and transmits the spread complex modulation symbols to a base station.
Abstract:
A method for wireless communication supporting uplink and downlink multi carriers Includes performing initial access through one of at least two downlink component carriers among multiple downlink component carriers including the at least two downlink component carriers through which the user equipment is allowed to perform the initial access; and transmitting via an uplink component carrier allocated to the user equipment by using a carrier identifier, wherein the carrier identifier is applied to the uplink component carrier and is obtained from the downlink component carrier through which the initial access is performed, and wherein the system pre-defines one-to-one correspondence between multiple downlink component carriers and multiple uplink component carriers, and wherein the downlink component carrier through which the initial access is performed and the uplink component carriers allocated to the user equipment do not match the one-to-one correspondence pre-defined by the system.
Abstract:
A data transmitter for a wireless communication system is provided. Said apparatus comprises an OFDM (Orthogonal Frequency Division Multiplexing) symbol generating part that generates a plurality of OFDM symbols, a frame configuration part that configures a frame comprising includes said plurality of OFDM symbols, and a transmission part that transmits said plurality of OFDM symbols based on said frame that has been configured. Said frame is divided into a plurality of sub-frames, the number of OFDM symbols that are included in an optional sub-frame is any one of 5, 6, and 7, and the bandwidth of said wireless communication system is 8.75 MHz. Based on a new frame configuration, new parameter requirements may be satisfied taking backward compatibility into account.
Abstract:
According to one embodiment, a method of allocating a radio resource for a relay station includes: transmitting configuration information through a higher layer signal, the configuration information including information regarding an OFDM symbol at which a relay zone begins; allocating the relay zone to the relay station in a subframe based on the configuration information; and transmitting a relay control channel to the relay station in the relay zone. The subframe includes OFDM symbols in a time domain and subcarriers in a frequency domain. The relay zone includes a subset of the OFDM symbols in the time domain and a portion of the subcarriers in the frequency domain. The configuration information indicates an OFDM symbol from among a second OFDM symbol, a third OFDM symbol and a fourth OFDM symbol. The relay control channel is transmitted from the fourth OFDM symbol of the subframe.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.