摘要:
A power transmission mechanism for power-transmittably coupling a rotating unit of a compressor (11) composed of a drive shaft (17), a rotating support (23) and a swash plate (27) with an engine (62), comprising a pulley (56) and an armature (58), both of which constitute a first rotating body provided on a side of the engine, a hub (57), which serve as a second rotating body coupled to the drive shaft of the compressor, and a spring (64), which serves as an elastic means for coupling the first and second rotating bodies. A spring constant of the spring (64) is set such that a resonant frequency (fR) determined by the spring constant and a sum of a moment of inertia of the rotating unit of the compressor and a moment of inertia of the second rotating body as dominant factors is made smaller than a minimum frequency (f1) of torque variation produced on the compressor and more preferably smaller than a minimum frequency (f2) of torque variation produced on the engine.
摘要:
A compressor having a crank chamber in which a large amount of lubricating oil is constantly maintained. The compressor includes a pressurizing passage through which refrigerant gas flows from a discharge chamber to the crank chamber. A displacement control valve varies the displacement of the compressor by adjusting the flow in the pressurizing passage thereby changing the pressure in the crank chamber and altering the inclination of a swash plate. The compressor further includes a bleeding passage. An oil separator is arranged in the bleeding passage to separate lubricating oil from the refrigerant gas flowing through the bleeding passage. The oil separator and the crank chamber are connected to each other by a recovery passage, through which the separated lubricating oil is returned to the crank chamber, and a pressurizing passage. A venturi tube is employed to help transfer oil from the oil separator to the crank chamber.
摘要:
The solenoid actuator (26) is designed to be installed within a mounting bore (22) formed in a support housing (24). The solenoid actuator (26) is provided at its top with an end cap (46) made of molded plastics which is configured to be closely fitted in the mounting bore (22) to close the opening of the bore. When the actuator is installed within the mounting bore (22), the end cap (46) protects underlying yoke member (40/64), armature (80) and magnetic pole piece (74) from attack by corrosive substance.
摘要:
A displacement control valve included in a variable displacement compressor. The compressor includes a fluid passage for connecting a crank chamber to a discharge chamber. The control valve includes a valve chamber connected to the crank chamber through the fluid passage, a valve hole connected to the discharge chamber through the fluid passage, and a valve body located in the valve chamber. A bellows influences the valve body through a pressure sensitive rod in accordance with suction pressure. A solenoid includes a fixed iron core and a plunger arranged in a plunger chamber. The plunger urges the valve body through a solenoid rod by a force determined by the level of electric current supplied to the solenoid. The fixed iron core, which is located between the valve chamber and the plunger chamber, includes a guide hole for receiving the solenoid rod. An annular passage for connecting the valve chamber to the plunger chamber is formed between the guide hole and the solenoid rod. Accordingly, the pressure of the crank chamber is applied to the plunger chamber through the valve chamber and the annular passage. In this control valve, the valve body has desirable operating characteristics without relying on parts having precise dimensions.
摘要:
A compressor has a front housing, cylinder block and a rear housing. The housings and cylinder block are secured to one another by a plurality of bolts. A plurality of pistons reciprocally move in cylinder bores to compress gas. Each of said bolts has a shaft extending through the housings and the cylinder block. A cam plate is supported on a drive shaft for integral rotation therewith to convert the rotation of the drive shaft to reciprocal movement of a piston in the cylinder bore. The piston rotates about its axis in accordance with rotation force transmitted from the cam plate and abuts against the shaft of the bolt, which extends in close proximity to the piston. The rotating piston abuts against the shaft so that the rotation thereof is restricted. The shaft has a diameter greater than that of a threaded portion formed at an end of the bolt. Since the threaded portion is smaller, the threaded portion does no damage to the piston during assembly.
摘要:
An axial multi-piston compressor includes a drive shaft, a cylinder block having cylinder bores formed therein and surrounding the drive shaft, and a plurality of pistons slidably received in the respective cylinder bores, wherein the pistons are successively reciprocated in the cylinder bores by a rotation of the drive shaft so that a suction stroke and a discharge stroke are alternately executed in each of the cylinder bores. During the suction stroke, a fluid is introduced into the cylinder bore, and during the compression stroke, the introduced fluid is compressed and discharged from the cylinder bore such that a residual part of the compressed fluid is inevitably left in the cylinder bore when the compression stroke is finished. The compressor further includes a rotary valve for allowing the residual part of the compressed fluid to escape from the cylinder bore into another cylinder bore governed by the compression stroke.
摘要:
A reciprocating-piston-type refrigerant compressor having a cylinder block having a plurality of cylinder bores in which a plurality of pistons reciprocate to effect suction, compression and discharge of refrigerant gas in response to rotation of a drive shaft, a gas receiving chamber for receiving the refrigerant gas before compression, a gas discharge chamber for receiving the compressed refrigerant gas, and at least one rotary valve element mounted on the drive shaft to be rotatable with the drive shaft and having a suction passageway for providing a fluid communication between the gas receipt chamber and each of a compression chambers formed in the plurality of cylinder bores so that the refrigerant gas before compression is sequentially drawn into the compression chambers during the rotation of the rotary valve element.
摘要:
A reciprocating-piston-type refrigerant compressor provided with a cylinder block having formed therein a plurality of cylinder bores in which a plurality of pistons are reciprocated to effect suction, compression and discharge of refrigerant gas in response to rotation of a drive shaft, a rotary valve element connected to the drive shaft to be rotated together with the drive shaft within a recessed chamber formed in the cylinder block, the valve element having an outer circumference in sliding contact with the inner wall of the recessed chamber and a suction passageway for sequentially introducing the refrigerant gas before compression into the plurality of cylinder bores during the rotation of the rotary valve element. A sealing mechanism is provided between opposite ends of the outer circumference of the rotary valve element and the inner wall of the recessed chamber to prevent the compressed refrigerant gas from leaking from the contact area of the rotary valve element and the inner wall of the recessed chamber toward a low pressure region of the compressor during rotation of the rotary valve element.
摘要:
A coolant gas guiding mechanism in a compressor is disclosed. A plurality of pistons reciprocate within corresponding cylinder bores that are formed around the rotary shaft, inside a casing. Each piston defines a working chamber in the corresponding cylinder bore. A rotary valve is provided coaxially with a rotary shaft. The rotary shaft has a suction chamber, an inlet through which the coolant gas is sucked in from external coolant circuit, and an outlet which communicates with a selected one of the working chambers in synchrony with the reciprocating movement of the piston, for supplying the coolant gas to the working chamber.