Abstract:
In a catheter device and a method for in vivo activation of a photosensitizing drug in a vessel, endovascular tissue, and/or intraluminal tissue, a catheter carrying both an optical coherence tomography (OCT) lens, from which OCT imaging light is emitted, and a photodynamic therapy (PDT) lens from which photosensitizing drug-activating light is emitted, is inserted into a vessel containing a lesion to be treated. A photosensitizing drug is caused to be placed in the vessel as well, such as in the form of a coating on a stent or a coating on an exterior of a balloon carried by the catheter. Light is emitted from the PDT lens to activate the photosensitizing drug while light is simultaneously emitted from the OCT lens to obtain an OCT image to monitor the drug activation.
Abstract:
The invention relates to a device for a medical intervention in or on moving tissue of a living being, said device having a medical instrument provided for the intervention, a position detection system by means of which the position of the medical instrument in the body of the living being can be determined, and at least one acceleration sensor for recording at least one movement of the instrument caused by the moving tissue. The invention also relates to a medical instrument for a medical intervention in or on moving tissue of a living being, said medical instrument having at least one acceleration sensor and a sensor of a position detection system, as well as to an operating method for the device.
Abstract:
A method and an x-ray system are disclosed for detecting and localizing a metabolic marker. In at least one embodiment, the method includes creating at least one absorption x-ray view of a patient or of a first region of a patient; creating at least one phase-contrast x-ray view of the patient or of a second region of the patient, with a quasi-coherent x-ray radiation being generated for the phase-contrast measurement with the aid of an x-ray grating arranged between the x-ray source and the patient, and the spatially dependent phase shift of the x-ray radiation in the patient being made visible with the aid of at least one grating between the patient and a detector; superposing the at least one absorption x-ray view and the at least one phase-contrast x-ray view; wherein orientation based on anatomical features is carried out with the aid of the at least one absorption x-ray view, and a spatial distribution of the metabolic marker present in the body of the patient is determined by the at least one phase-contrast x-ray view.
Abstract:
A method is disclosed for marking and visualizing an implant by use of an x-ray phase-contrast tomography examination. Further, an implant is also disclosed. In at least one embodiment, implants are used with specific characteristics which are as unambiguous as possible with regard to the phase shift generated by the implants in a phase-contrast tomography examination. In at least one embodiment, these specific characteristics can include the typical self-generated specific phase shift, typical differences in the specific phase-shift values, or typical spatial structures of materials with well-defined phase-shift values.
Abstract:
A method and an x-ray computed tomography system are disclosed for visualizing at least two different types of cardiac tissue, such as normally perfused tissue, hypoperfused tissue and scarred tissue. In at least one embodiment, this is done by use of an imaging tomographic recording technique with the aid of x-ray radiation, wherein at least one cardiac region of a patient is scanned by x-ray radiation which passes through a first grating for the passing-through x-ray radiation, designed as an absorption grating, prior to reaching the patient, and at least the locally caused phase-shifts of the x-ray radiation in the cardiac region are also made detectable by using a second grating for the passing-through x-ray radiation, designed as a phase grating, downstream of the patient in the emission direction, and the spatial distribution of these shifts is measured and reconstructed, wherein an average specific phase-shift value is assigned to each spatial unit, wherein each of the abovementioned tissue types are assigned to a region of a typical specific phase-shift value and at least one region assigned to a tissue type is optically highlighted in a view of the cardiac region.
Abstract:
A focus-detector arrangement includes a radiation source with a focus, arranged on a first side of the subject, for generating a fan-shaped or conical beam of rays; at least one X-ray optical grating arranged in the beam path, with at least one phase grating arranged on the opposite second side of the subject in the beam path generating an interference pattern of the X-radiation preferably, in a particular energy range; and an analysis-detector system which detects at least the interference pattern generated by the phase grating in respect of its phase shift with position resolution. According to at least one embodiment of the invention, at least one X-ray optical grating including bars which are free from overhangs form shadows in the beam path of the fan-shaped or conical beam of rays.
Abstract:
A method for defining image quality characteristics of X-ray based medical projection imaging devices is provided. A spatial frequency-dependent signal-to-noise ratio function includes image quality parameters of spatial resolution, object contrast and noise. The detectability of an object embedded into a defined background, such as a cardiac guide wire in a patient is determined. An X-ray system may be defined and set up for obtaining an optimized image quality to determine the best object detectability for a given patient dose.
Abstract:
An apparatus for spatial modulation of an x-ray beam has a number of planar attenuation elements for x-ray radiation that are disposed in a grid on a carrier and can be pivoted or tilted by a piezoelectric actuator, independently of one another, between at least two positions. One or more sensors with which a piezoelectrically-caused length and/or width and/or position change of the piezoelectrically influenced regions can be detected, are arranged on piezoelectrically influenced regions of the attenuation elements or the actuators. A significant dose reduction and/or dynamic adjustment thereof can be achieved with the apparatus by image adaptation in many areas of x-ray imaging, since a precise determination of the position of each attenuation element in real time is enabled.
Abstract:
The invention relates to a device for protecting a display facility, comprising a protective element for covering an image surface of the display facility. As the protective element is designed to be transparent and the retaining means are provided for the exchangeable arrangement of the protective element in front of the image surface, a protective device is provided, which allows the image surface to be examined and is easy to operate.
Abstract:
A method for defining image quality characteristics of X-ray based medical projection imaging devices is provided. A spatial frequency-dependent signal-to-noise ratio function includes image quality parameters of spatial resolution, object contrast and noise. The detectability of an object embedded into a defined background, such as a cardiac guide wire in a patient is determined. An X-ray system may be defined and set up for obtaining an optimized image quality to determine the best object detectability for a given patient dose.