Abstract:
Embodiments of the present invention provide a method and an apparatus for dynamic spectrum management. The method includes: determining a reusable spectrum for one of multiple cell links in a network according to co-frequency indication information, where the co-frequency indication information is used to indicate reusable levels of spectrums of other cell links for each cell link in the multiple cell links; and updating a spectrum configuration of the one of the multiple cell links by using the reusable spectrum of the one of the multiple cell links. By determining a reusable spectrum for a specific cell link according to co-frequency indication information, embodiments of the present invention can locally adjust the spectrum configuration of the specific cell link, thereby reducing a spectrum configuration overhead while increasing network capacity and reducing inter-cell interference.
Abstract:
A method for accessing to a mobile communication network, comprising: acquiring a session matching level for each cell, which is calculated based on a session type of a session initiated by a user terminal as needed, a session data rate available to the user terminal of each cell and load balance parameters of each cell; accessing to a cell selected according to the session matching level for each cell. Further, it also provides another method for accessing to a mobile communication network, and corresponding user terminal, network-side device and communication system.
Abstract:
A power control method includes obtaining, by a first terminal, parameter information required for power control, where the parameter information includes at least one of a first parameter, a second parameter, and a third parameter, and determining, by the first terminal based on the parameter information, uplink transmit power used when uplink transmission is performed on a target beam or a target beam pair; where the first parameter includes a beam reception gain of a network device and/or a beam sending gain of the first terminal, where the second parameter is used to indicate interference caused by a second terminal to the first terminal on the target beam, and where the third parameter includes beam-specific target power and/or terminal-specific target power.
Abstract:
A measurement reporting method and device, the method including configuring, by a first network device, at least one of first information or second information for user equipment, the first information including a first or second threshold, the first threshold being associated with triggering a first type of measurement event and the second threshold associated with triggering a second type of measurement event, where the second information instructs the user equipment to report a first or second measurement result, the first measurement result being a cell measurement result, and the second measurement result a beam measurement result, delivering, by the first network device, the first or second information to the user equipment, the delivering causing the user equipment to report a measurement result to the first network device in response to a measurement event, and receiving the measurement result sent by the user equipment.
Abstract:
A system information updating method, a user equipment and a base station are provided, the method including: receiving, by the wake-up radio (WUR) interface of the user equipment, a wake-up signal sent by the base station, where the wake-up signal is used to wake up a main radio interface of the user equipment and instruct the main radio interface of the user equipment to receive updated system information, the wake-up signal includes system information (SI) update transmission control information, and the SI update transmission control information includes information required for receiving the updated system information; waking up, by the WUR interface of the user equipment, the main radio interface of the user equipment; and receiving, by the user equipment according to the SI update transmission control information through the woken-up main radio interface, the updated system information sent by the base station.
Abstract:
A circuit switched fallback (CSFB) method and apparatus, where a user equipment (UE) initiates a calling process, receives a first request from a first communications system, and after the UE is transferred to a second communications system and before the UE receives a first message from the second communications system, the UE determines that a voice call bearer cannot be set up in the second communications system, and initiates a CSFB in the second communications system, where the first message is used by the UE to determine that a call request has failed.
Abstract:
Embodiments of the present invention provide an initial access method and apparatus. The method includes: sending, by an access network device, a synchronization signal to user equipment by using at least two downlink beams, where the synchronization signal includes downlink beam indexes of the at least two downlink beams; receiving, by the access network device, a random access preamble sequence sent by the user equipment; and sending, by the access network device, a random access response RAR message to the user equipment by using at least two downlink beams, so that the user equipment completes initial access. In the initial access method provided in the embodiments of the present invention, a disadvantage of channel instability in a high-frequency transmission environment in a new radio system is overcome, to improve initial access performance in the NR system and further improve user experience for the system.
Abstract:
A network slice selection method, a radio access device, and a terminal, where the method includes obtaining, by a radio access network (RAN) device, network slice information, sending, by the RAN device, a first message to a terminal, where the first message includes the network slice information, receiving, by the RAN device, a first access request message from the terminal after the terminal selects, based on the network slice information, first attribute information of a first network slice to be accessed by the terminal, and selecting, by the RAN device based on the first attribute information of the first network slice, a second network slice to be accessed by the terminal. The method enables an operator to flexibly configure a network slice, and reduces a communication latency and signaling overheads in a process in which a terminal selects a network slice.
Abstract:
A method, system and device for allocating resources of a base station node (Node B) are disclosed to enable F-DPCH resources of a local cell to be sufficiently used. In this invention, Node B reports to the RNC the F-DPCH capability of the local cell so as to provide a decision-making basis about using or not using the F-DPCH to the RNC. If the local cell supports F-DPCH, when the UE initiates an RRC connection establishment request, the RNC instructs the Node B to distribute the F-DPCH and HSDPA resources to the UE, otherwise the RNC instructs the Node B to distribute DPDCH and DPDCCH resources to the UE. The F-DPCH capability of the local cell can be reported in a newly added IE or extended existing IE of the Audit Response message and Resource Status Indication message.
Abstract:
Embodiments of the present disclosure provide a resource configuration method and a resource configuration network device. The method includes: obtaining subframe information of each of multiple cells, where the subframe information of each of the multiple cells includes subframe configuration information and flexible subframe resource requirement information of each cell; and determining a flexible subframe resource configuration of each cell according to the subframe information of each of the multiple cells, where the flexible subframe resource configuration of each cell includes that each cell uses one or more of N flexible subframes to perform data transmission. A flexible subframe resource requirement of each of multiple neighboring cells is obtained, and flexible subframe resource configurations of the cells are coordinated in a distributed manner according to a subframe configuration and the flexible subframe resource requirement of each cell, thus, cross-subframe interference that may exist between flexible subframes can be reduced.