Abstract:
Methods and apparatuses are disclosed that allow an electronic device to autonomously adapt one or more user alerts to the current operating environment of the electronic device. For example, some embodiments may include a method comprising providing a plurality of alert devices in an electronic device, determining an operating environment of the electronic device using a sensor of the electronic device, and actuating at least one of the plurality of alert devices that corresponds to the determined operating environment.
Abstract:
The disclosed embodiments relate to a technique for inductively charging an electronic device. This technique involves winding an audio cable for the electronic device around a charging mechanism multiple times so that one or more conductors in the audio cable form an inductive receiving coil. Next, a magnetic field is created through the charging mechanism to induce a current in the inductive receiving coil. Finally, the induced current in the inductive receiving coil is used to charge a rechargeable battery for the electronic device.
Abstract:
Apparatus, systems and methods for shock mounting glass for an electronic device are disclosed. The glass for the electronic device can provide an outer surface for at least a portion of a housing for the electronic device. In one embodiment, the shock mounting can provide a compliant interface between the glass and the electronic device housing. In another embodiment, the shock mounting can provide a mechanically actuated retractable. For example, an outer glass member for an electronic device housing can be referred to as cover glass, which is often provided at a front surface of the electronic device housing.
Abstract:
Electronic devices may be provided that contain multiple housing portions. The housing portions may be coupled together using hinges. The hinges may include hinges based on a three-bar linkage, hinges based on a four-bar linkage, hinges with slotted members, hinges formed from flexible support structures, and hinges based on flexible housing structures. Flexible displays may be mounted to the housing portions overlapping the hinges. When the housing portions in a device are rotated relative to each other, the flexible display may bend. The hinge may be configured to allow the flexible display to be placed in a front-to-front configuration in which an active side of the display faces itself or a back-to-back configuration. Engagement structures may be used to help the housing grip external objects and to hold the housing portions together. The hinges may be provided with rotational detents to help hold the flexible display in desired positions.
Abstract:
Split jack assemblies are constructed with a tubeless pin block. Elimination (or split) of the tube, or more particularly, a tube that is an integrally formed part of the pin block form the pin block allows for the use of a tubeless pin block design that results in a jack assembly having smaller overall dimensions than a conventional jack assembly constructed to accommodate a plug of the same dimensions. The tubeless pin block can be used in conjunction with a tube sleeve or with a curved surface of a housing for an electronic device, or both to provide a plug receptacle of the split jack assembly.
Abstract:
Multi-layer ACF flex circuits can be bonded to multiple, separate and distinct circuits on substrates. The multi-layer ACF bonds are formed by aligning each of multiple circuits with a separate portion of a multi-layer ACF flex circuit and then forming ACF bonds using a single or multiple thermodes. The selection of single or multiple thermodes depends on the required thermal profile for each of the ACF bonds. The multiple ACF bonds may also be formed to a single multi-layer ACF flex circuit independently such that realignment may occur after individual bonds have already been formed.
Abstract:
An electronic device is provided with a display and a light sensor that receives light that passes through the display. The display includes features that increase the amount of light that passes through the display. The features may be translucency enhancement features that allow light to pass directly through the display onto a light sensor mounted behind the display or may include a light-guiding layer that guides light through the display onto a light sensor mounted along an edge of the display. The translucency enhancement features may be formed in a reflector layer or an electrode layer for the display. The translucency enhancement features may include microperforations in a reflector layer of the display, a light-filtering reflector layer of the display, or a reflector layer of the display that passes a portion of the light and reflects an additional portion of the light.
Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.
Abstract:
A head-mounted device may have a head-mounted support structure, a gaze tracker in the head-mounted support structure, and one or more displays in the head-mounted support structure. For example, two displays may display images to two eye boxes. The display may display a virtual keyboard and may display a text input in response to a gaze location that is determined by the gaze tracker. The gaze tracker may additionally determine a gaze swipe input, or a camera in the support structure may determine a hand swipe input, and the swipe input may be used with the gaze location to determine the text input. In particular, the swipe input may create a swipe input curve that is fit to the text input to determine the text input. A user's hand may be used as a secondary input to indicate the start or end of a text input.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.