Abstract:
A combined cycle steam and gas power plant is disclosed in which energy for generating steam to drive a steam turbine and for heating air to drive a gas turbine is provided by combustion of a single carbonaceous sulfur-bearing fuel such as coal at nearly atmospheric pressure in a sulfur-sorbing fluidized bed combustor. Fluidizing and combustion air for the combustor is furnished by exhaust from the gas turbine, and an air heat exchanger within the combustor allows indirect heating of air for driving the gas turbine so that corrosion of gas turbine hardware by the products of combustion is avoided.
Abstract:
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a novel turbine for driving a hot water pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth''s surface, where transfer of its heat content to a closed-loop boiler-turbine-alternator combination is effected for the generation of electrical or other power. Clean water is regenerated by surface-located equipment for re-injection into the deep well and the residual concentrated solute-bearing water is pumped back into the earth. The novel pump driving turbine features a compact and efficient steam turbine configuration adapted for use in the hostile environment of the deep hot-water well. Super-heated steam passes downwardly to impact turbine blades at the periphery of the turbine wheel. A further feature permits the expanding steam then to reverse its sense of flow in a compact arrangement returning the steam along the axis of the turbine wheel and then to the earth''s surface for further energy recovery.
Abstract:
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operation of a turbinedriven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth''s surface. There, it is used by transfer of its heat content to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Cooled, clean water is regenerated by the surface-located system for re-injection into the deep well and the residual concentrated solute-bearing water is pumped back into the earth. Significant axial thrust is developed in the support bearing system of the steam turbine driven hot water pump because of the considerable pressure head rise generated by the hot water pump, the axial thrust being proportional to the hot water pump discharge pressure. According to the invention, a balancing thrust is developed that is also proportional to pump discharge pressure, so that the net thrust is minimized over a range of speed and hot water flow conditions.
Abstract:
A steam generating container A heated by a heat source includes: a water evaporation chamber into which water is supplied by a water supply device; a leading opening to lead steam from the water evaporation chamber, and ejection openings ejecting steam led through the leading opening into a heating chamber containing food. A buffer chamber connecting through the leading opening and with the ejection openings is provided between the water evaporation chamber and the heating chamber. Even when bumping water enters the buffer chamber through the leading opening, the bumping water having entered flows inside the buffer chamber. Thus, the bumping water is hardly ejected into the heating chamber through the ejection openings.
Abstract:
Systems and generating power in an organic Rankine cycle (ORC) operation to supply electrical power. In embodiments, an inlet temperature of a flow of gas from a source to an ORC unit may be determined. The source may connect to a main pipeline. The main pipeline may connect to a supply pipeline. The supply pipeline may connect to the ORC unit thereby to allow gas to flow from the source to the ORC unit. Heat from the flow of gas may cause the ORC unit to generate electrical power. The outlet temperature of the flow of the gas from the ORC unit to a return pipe may be determined. A flow of working fluid may be adjusted to a percentage sufficient to maintain temperature of the flow of compressed gas within the selected operating temperature range.
Abstract:
A power generation system having a combustion engine with a Rankine bottoming cycle, the system including a first flow path for a process fluid and a second flow path for a working fluid, and a heat exchanger arranged along both the first and the second flow paths to transfer waste heat from the process fluid to the working fluid. The heat exchanger includes a first flow conduit being bounded by a first wall section and configured to convey the process fluid, a second flow conduit to convey the working fluid, the second flow conduit being bounded by a second wall section spaced apart from the first wall section to define a gap therebetween, and a thermally conductive structure arranged within the gap and joined to the first and second wall sections to transfer heat therebetween, the gap being fluidly isolated from both the process fluid and the working fluid.
Abstract:
Systems and methods for improving the efficiency of a power plant exploit the temperature differential of the cooling water that may exist seasonally in some geographic locations. Specifically, new systems and ways of retrofitting existing systems to utilize the additional temperature differential of a power plant's coolant during colder months are provided in order to increase the efficiency of the plant. A second working fluid loop converts a portion of the condenser of the first working fluid loop into the boiler for the second working fluid loop in which the first and second working fluids in these respective loops are different. Thus, the energy output of the plant may be increased by the addition of a selectively operated secondary loop without an increase in fuel consumption.
Abstract:
A single shaft combined cycle power plant includes a shaft on which is sequentially located, a gas turbine, a medium pressure steam turbine, a low pressure steam turbine, a generator, and a high pressure steam turbine, wherein the gas turbine and the high pressure steam turbine are at opposite ends of the shaft.
Abstract:
A steam generating container A heated by a heat source includes: a water evaporation chamber into which water is supplied by a water supply device; a leading opening to lead steam from the water evaporation chamber, and ejection openings ejecting steam led through the leading opening into a heating chamber containing food. A buffer chamber connecting through the leading opening and with the ejection openings is provided between the water evaporation chamber and the heating chamber. Even when bumping water enters the buffer chamber through the leading opening, the bumping water having entered flows inside the buffer chamber. Thus, the bumping water is hardly ejected into the heating chamber through the ejection openings.