Abstract:
The invention provides a multi-film forming apparatus including a substrate holder stock chamber for storing a plurality of substrate holders separately from a path in the multi-film forming apparatus, so that production can be performed without being affected by the process of removing a film accumulated on the surface of the substrate holder and the process of replacing the substrate holder, or by the process of removing a film accumulated on the surface of the substrate holder or the process of replacing the substrate holder, and hence high-throughput production is possible. A branch path is provided on the path of the multi-film forming apparatus, and a substrate holder stock chamber for storing a plurality of substrate holders which enables retrieval of the substrate holder from the path and feeding of the substrate holder to the path is provided.
Abstract:
The present invention relates to the deposition in a magnetron reactor (1) equipped with a magnetron cathode (MC) of at least one material on a substrate (11a), according to which process said material is vaporized by magnetron sputtering, using a gas that is ionized in pulsed mode. To this effect and in order to favour the formation of high current pulses of short duration while avoiding the formation of electric arcs and while enabling an effective ionisation of the sputtered vapour, a preionization of the said gas prior to the application of the main voltage pulse on the magnetron cathode (MC) is carried out in order to generate current pulses (CP) whose decay time (Td), after cut-off of the main voltage pulse (VP) is shorter than 5 μs.
Abstract:
The present invention pertains to a sputtering target transport box having a void the size of a sputtering target, wherein supports for mechanical transport are provided to the bottom plate of the transport box, and a wheel for man-powered transport is provided to the edge portion of the bottom plate. Provided thereby is a sputtering target transport box in which the removal and transport of a sputtering target is easy, and which enables the transport of a sputtering target without causing any damage thereto.
Abstract:
An end-block for electrically energising a rotatable tubular target in a vacuum coating installation is disclosed. The end-block has a rotary electrical contact that reduces the joule heating effects when operating in alternating current mode. When compared to known end-blocks, this is achieved by increasing the number of contact areas between a contacting ring and a series of circumferentially mounted contacting shoes. Also the contact shoes are being pressed radially outwardly by means of resilient elements against the contacting ring.
Abstract:
A polymer electrolyte for an electrochemical half-cell, such as a reference half-cell, contains a polymer which can be produced by polymerization of N-acryloyl-amino-ethoxy-ethanol or by co-polymerization of N-acryloyl-amino-ethoxy-ethanol with at least one further monomer component.
Abstract:
The invention relates to a partially disposable substrate holder used in magnetic latches for securing substrates on a planetary rotating platform suspended above a coating source in a vacuum chamber of a vapor deposition system, e.g. a chemical vapor deposition (CVD) system or a physical vapor deposition (PVD) system. The substrate holder includes a reusable base formed, at least partially, from a ferro-magnetic material, which is attracted to the magnetic latch, and a disposable cover formed from a relatively inexpensive, ferromagnetic, easily formable material, which encourages adherence of coating material and has a low vapor pressure at coating temperatures.
Abstract:
A lift mechanism for and a corresponding use of a magnetron in a plasma sputter reactor. A magnetron rotating about the target axis is controllably lifted away from the back of the target to compensate for sputter erosion, thereby maintaining a constant magnetic field and resultant plasma density at the sputtered surface, which is particularly important for stable operation with a small magnetron, for example, one executing circular or planetary motion about the target axis. The lift mechanism can include a lead screw axially fixed to the magnetron support shaft and a lead nut engaged therewith to raise the magnetron as the lead nut is turned. Alternatively, the support shaft is axially fixed to a vertically moving slider. The amount of lift may be controlled according a recipe based on accumulated power applied to the target or by monitoring electrical characteristics of the target.
Abstract:
To improve adhesive properties between an electrically conductive polymer membrane and a solid electrolyte membrane to each other, and thus to ensure the operation of an electrically conductive polymer actuator which effects a bending motion is aimed.The bendable electrically conductive polymer actuator of the present invention is an electrically conductive polymer actuator having a laminating structure of: a first organic polymer including at least one or more of a vinylidene fluoride/hexafluoropropylene copolymer, polyvinylidene fluoride, a perfluorosulfonic acid/polytetrafluoroethylene copolymer, polymethyl methacrylate, polyethylene oxide, and polyacrylonitrile; a solid electrolyte membrane including a mixture with an ionic liquid; and an electrically conductive polymer membrane including a mixture of polyethylenedioxythiophene and polystyrene sulfonic acid on at least one face of the solid electrolyte membrane, in which a second organic polymer including polyvinylphenol is embedded in the electrically conductive polymer membrane surface in the state being dispersed.
Abstract:
A semiconductor or nonconductor vapor is generated by sputtering targets 11U, 11D in a first sputtering chamber 10, while a metal vapor is generated by sputtering targets 21U, 21D in a second sputtering chamber 20. The semiconductor or nonconductor vapor and the metal vapor are aggregated to clusters during travelling through a cluster-growing tube 32 and injected as a cluster beam to a high-vacuum deposition chamber 30, so as to deposit composite clusters on a substrate 35. The produced composite clusters are useful in various fields due to high performance, e.g. high-sensitivity sensors, high-density magnetic recording media, nano-magnetic media for transportation of medicine, catalysts, permselective membranes, optical-magnet sensors and low-loss soft magnetic materials.
Abstract:
An electrode cartridge, a hydrogen generating apparatus and a fuel cell power generation system equipped with the electrode cartridge and hydrogen generating apparatus are disclosed. The electrode cartridge can include an anode configured to generate electrons in an electrolyte solution, a cathode configured to generate hydrogen from the electrolyte solution by receiving the electrons at the anode, a liquid-gas separation membrane, which is disposed to surround the anode and the cathode, configured to separate the hydrogen from the electrolyte solution and discharge the hydrogen to the outside, and a support configured to support the liquid-gas separation membrane for preventing an expansion of the liquid-gas separation membrane. The electrode cartridge of the present invention can prevent an effect of electrolyte solution flowing backwards when generating hydrogen as well as an effect of electrolyte solution leak when moving.